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ABSTRACT 

In this dissertation, we formulate and analyze a series of electric utility-cogeneration facility 

relationships to understand their ramifications on the economic welfare and environment. For 

our models we focus on a host utility and a qualifying facility under Public Utilities 

Regulatory Policies Act (PURPA; 1978 and subsequent amendments) and the total surplus as 

the economic welfare performance criterion and the total nitrogen oxides (NOx) emissions as 

the environmental performance criterion. We first model the host utility and qualifying 

facility interaction as a Stackelberg game and derive the equilibrium generation quantities, 

prices and total surplus without emission considerations. We show analytically that the total 

surplus when the host utility and qualifying facility interact due to PURPA is lower than 

when the cogeneration facility is an Independent Power Producer or IPP. The Independent 

Power Producer configuration is when the cogeneration facility sells electricity directly to 

retail electricity customers without a PURPA contract at the prevailing electricity price set by 

the electric utility. Next, we extend the basic model by considering the regulation of 

emissions of NOx by the electric utility. The regulatory program is modeled after the Clean 

Air Interstate Rule’s (CAIR; 2005 and subsequent amendments) ozone season NOx program. 

By comparing the total NOx emissions generated in the system in the cogeneration under 

PURPA or CGP configuration with the IPP configuration we show analytically that the total 

NOx emissions is lower in the CGP if the heat demand of the thermal host attached to the 

qualifying facility is high and the PURPA buyback price at which the qualifying facility sells 

electricity to host utility is low. Through this study we have derived conditions under which 

PURPA is justified or and clarified the applicability of PURPA.
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

1.1 Introduction  

Energy is the foundation on which modern society has been built. Every aspect of energy – 

its generation, distribution and consumption – has become a topic of discussion and research 

in the last century. In particular, the efficient and reliable generation and supply of electricity 

has been important requirement to our everyday life. In the US, the electricity supply 

industry is heavily regulated to ensure that electricity is generated in an efficient and reliable 

manner with minimal damage to the environment.  In this thesis we study a specific energy 

generation technology, cogeneration, and a specific legislation that aims to promote it, the 

Public Utility Regulatory Policies Act (PURPA). Specifically, we study the generation 

planning problem and the associated economic and environmental performance of a 

cogeneration facility and an electric utility that are part of a PURPA contract.  

 The objective of the thesis is to identify PURPA’s impact on the generation and 

operation decisions of an electric utility and a cogeneration facility. In addition, it also aims 

to evaluate PURPA’s provisions for the cogeneration facility by comparing the economic and 

environmental performance of the electric utility and cogeneration facility under PURPA 

with their performance in other configurations without PURPA.  

 To achieve the above mentioned objectives, we develop and study a series of 

progressively complex models that quantify and compare the total surplus of different energy 

generation/consumption system configuration. The components of the energy system are a 

vertically integrated electric utility, the retail electricity customers and a cogeneration facility 

with a thermal host with fixed heat and electricity demands. The main model of the paper is 
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one that models the system where the electric utility has a PURPA contract with a 

cogeneration facility.  The model is referred to as the Cogeneration Generation Planning 

under PURPA or CGP model. To evaluate the economic and environmental performance of 

the CGP model, the CGP model’s outputs are compared with three benchmark models. Each 

of the three benchmarks represents a different generation/ consumption strategies available to 

the components of the energy system.  

 The simplest benchmark is the Heat Production without cogeneration configuration or 

HP model. The HP model captures a system that does not any cogeneration in it. In this 

model a heat production unit owned by the thermal host satisfies the process heat demand of 

the thermal host. To satisfy its electricity demand the thermal host purchases electricity from 

the electric utility in a bilateral transaction  

 The second benchmark is an energy system configuration that consists of a 

cogeneration facility owned by the thermal host that satisfies both its heat and electricity 

demand but does not interact with the electric utility or the retail electricity customers.  This 

model is referred to as the Self generation using cogeneration (SCG) model.   

 The third and most complex benchmark is an energy system in which a cogeneration 

facility and electric utility compete to supply electricity to the retail electricity customers. 

The cogeneration facility owned by the thermal host satisfies the heat and electricity demand. 

In addition, the cogeneration facility also supplies electricity directly to the retail electricity 

customers.  This benchmark is based on the existence of Independent Power Producers (IPP) 

that serve retail load.  The electric utility also supplies electricity to the retail electricity 
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customers. The cogeneration facility is referred to as an independent power producer and the 

model is called as cogeneration facility as an Independent Power Producer (IPP) model.   

 The thesis consists of two parts – the economic performance of cogeneration under 

PURPA and the environmental performance of cogeneration under PURPA.  The economic 

performance of cogeneration under PURPA is evaluated by determining the total surplus 

realized in the CGP model with the total surplus realized in the benchmark models. The 

environmental implications of electricity generation well documented, it is important to 

evaluate the environmental performance of all regulations. Hence we evaluate the 

environmental performance of PURPA by comparing the total Nox emissions realized in the 

CGP model with the total Nox emissions realized in the benchmark models. 

 The rest of the thesis is organized as follow, in section 1.2 we present the background 

information on cogeneration and PURPA. In chapter 2 we focus on the economic 

performance of cogeneration under PURPA.  Relevant literature related to the cogeneration 

under PURPA model is presented in section 2.1 followed by the modeling assumption of the 

basic models without environmental considerations in section 2.2. In section 2.3, 2.4, 2.5 and 

2.6 we formulate and solve CGP model, IPP model, SCG model and the HP model 

respectively. In section 2.7 we compare the economic performance of the CGP model with 

the economic performance of the three benchmark models and summarize our findings 

regarding the economic performance of the cogeneration under PURPA configuration.  

 In chapter 3 we focus on the environmental performance of cogeneration under 

PURPA by formulating and solving the extended model which is the basic model from 

chapter 2 with environmental considerations. An overview of the NOx regulatory programs is 
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presented in section 3.11 followed by a brief review of literature related to NOx regulatory 

programs and cogeneration in section 3.2. In section 3.3  we present the additional modeling 

assumptions related to the extended model. In section 3.4, 3.5, 3.6 and 3.7 we formulate and 

solve CGPE model, IPPE model, SCGE model and the HPE model respectively. In section 

3.8 we compare the total NOx emissions of the CGPE model with the total surplus of the 

three benchmark models and summarize our findings regarding the environmental 

performance of the cogeneration under PURPA configuration. We conclude with chapter 4 

with conclusions, discussion and future research. 

 

1.2 Background 

In this subsection the two critical components of the dissertation namely – cogeneration and 

PURPA are explained in detail. 

1. 2.1 Overview of Cogeneration 

Cogeneration is defined as the sequential use of fuel for generation of two useful energy 

products – electricity and useful heat (Petchers, 2003).  Cogeneration has a fuel efficiency of 

80 to 90 % compared to the 33% fuel efficiency of conventional electricity generation units. 

A conventional electric utility is one which generates only electricity and does not reutilize 

the waste heat energy in the exhaust gases or steam left over after electricity generation.  A 

pictorial description of cogeneration and its variation from conventional energy production is 

presented in Figure 1. 
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Figure 1. Cogeneration process and its variation from conventional energy production1 

 Cogeneration has two important advantages – fuel conservation and reduced 

emissions (Hu 1985; Petchers, 2003; Spiewak and Weiss, 1997).  Cogeneration facilities are 

ideally suited for industries and facilities that require a reliable and continuous supply of both 

electricity and thermal energy. Examples of industries that are suitable for cogeneration 

include paper and pulp industries, oil refineries, chemical plants, etc. It is essential that the 

thermal and power loads of these industries should be closely matched. Cogeneration plants 

are also found in hospitals and universities. Cogeneration is preferred in such facilities since 

they require steady and reliable supply of power and heat for space heating.  

 Cogeneration facilities differ mainly in three ways  - the type of fuel used, the 

technology and the load characteristics. In terms of fuel most cogeneration facilities operate 

                                                 

1 Image courtesy of Cogenworks (http://www.cogenworks.com/gtf_CogProcess.html) 
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on Natural Gas or Oil. However, coal, biogas and other waste stream based fuels are also 

used by cogeneration facilities.  

 In terms of technology the main types of cogeneration facilities are topping cycle or 

bottoming cycle.  In topping cycle cogeneration unit’s electricity is generated first and the 

thermal output (heat or steam) is the secondary output. In the bottoming cycle cogeneration 

units fuel is used to generate the thermal output first and the waste heat is used to obtain 

electricity as the secondary product. In terms of the load characteristics or demand 

characteristics, cogeneration units are of two types –electricity load following and thermal 

load following. In the former type of cogeneration facility the electricity load satisfaction is 

the main goal with the operation of the unit dependent on the electricity demand. In the 

thermal load following type of cogeneration facility the thermal load satisfaction is the main 

goal with the operation of the unit dependent on the thermal demand.  In this dissertation we 

focus on cogeneration facilities that are topping cycle, thermal load following, cogeneration 

facilities 

1.2.2 Public Utilities Regulatory Policies Act of 1 978 (PURPA) 

In the United States, cogeneration gained importance with the implementation of the Public 

Utility Regulatory Policies Act (PURPA) of 1978. The main intents of PURPA were 

- To promote energy production efficiency and energy conservation 

- Decrease dependence on foreign fuel sources and 

- To promote use of renewable fuel sources 
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It achieved this purpose by promoting cogeneration (fuel efficiency) and small power 

producers (Danielsen et al, 1999, Lamoureux, 2002). To achieve its goals PURPA provided 

the status of “qualifying facility” to cogeneration and small power producers that satisfied 

certain efficiency standards. Qualifying facilities were provided with the following benefit 

1. The right to sell electricity to the electric utility at the utility’s “avoided cost”. 

2. Interconnection to the grid from the electric utility at non discriminatory rate and 

quality. 

3. Availability of backup/maintenance/supplemental electricity at non discriminatory 

rates from the electric utility. 

 The utilities that bought the electricity sold by qualifying facilities and provided these 

facilities with interconnection to the grid were termed as the host utilities. The right to sell 

electricity to the electric utility at the utility’s “avoided cost” based rate is termed as the 

“PURPA Put” (Gottlieb, 2001). The “avoided cost” based rate is defined as the cost that the 

utility would have incurred by generating or purchasing the electricity provided by the 

qualifying cogeneration facility (Hirsh, 1999, Danielsen et al, 1999).  The law also ensured 

that the qualifying cogeneration facilities will be able to purchase backup/ maintenance/ 

supplemental at just and reasonable rates (Spiewak and Weiss, 1997). It should be noted that 

the rates charged by the electric utilities vary for backup electricity, maintenance electricity 

and supplemental electricity. The qualifying facilities were able to negotiate beneficial rates 

for backup and maintenance electricity. However, qualifying facilities are charged at the 

market price for supplemental electricity (Glassman, 2007) 



www.manaraa.com

8 

 

 

 Though PURPA is a federal law under the Federal Energy Regulatory Commission, 

the implementation of the law is by state regulatory authorities.  As part of the 

implementation of PURPA, electric utilities entered into long term contracts with qualifying 

facilities. These contracts were executed in the early eighties to nineties for periods ranging 

from 10 to 30 years. For example, in California the PG&E utility entered into a contract with 

Watson Cogeneration Facility in 1985 which will expire in 2008 (Hawley, 2005). Warrior 

Run a 180 MW facility in Maryland has a PURPA contract that will expire in 2029 (Wilson 

et al, 2005). In addition to overseeing the establishment of these long term contracts, the state 

authorities are also responsible for determining the “avoided cost” of the utilities (Hirsh, 

1999).  . The definition of avoided cost has been interpreted in many ways by the various 

state authorities and different formulas for its calculation are in effect in the different states 

(Spiewak and Weiss 1997, pg 29).  

 The effect of PURPA and the long term PURPA contracts has been pronounced with 

both supporters and detractors for the regulation. The most contentious aspect of the law is 

the PURPA put and the estimation of avoided costs. The point of contention between the 

utilities and the qualifying facilities has been the above market rate of the avoided cost 

(Danielsen et al, 1999). Utilities claim that the high avoided costs and the mandatory 

purchase obligation are directly responsible for high wholesale prices (EIA, 2000). 

Detractors claimed that nearly $42 billion will be paid by consumers of electricity in above 

market prices for PURPA mandated electricity from qualifying facilities and that PURPA 

electricity was twice as expensive as the average utility cost (Adelberg, 1999). In addition, 
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utilities claim that the law is anticompetitive and does not allow for flexibility in utility 

generation planning (Lamoureux, 2002) 

 Qualifying facilities claim that the PURPA incentives are crucial for their viability as 

electricity generators and that they do not have access to competitive markets. PURPA 

supporters state that the deregulation has not been completely successful and that the law is 

required for continued sustainability of the qualifying facilities (Lamoureux, 2002). 

Supporters also claim that the intents of the law, energy conservation and fuel diversification, 

are still critical to the nation and that the current industry practices do not promote these 

goals. (EIA,2000). 

 In 2005, the most comprehensive Energy Bill, the Energy Policy Act (EPAct) was 

passed by the congress. Based on the concerns raised by the utilities, EPAct amended 

PURPA in the following critical aspects 

1. Electric utilities are not required to enter into new contracts with qualifying facilities 

to purchase or sell electrical energy when qualifying facilities have nondiscriminatory 

access to wholesale competitive markets. 

2. Qualifying facilities can be owned by electric utilities 

3. Qualifying cogeneration facilities have to demonstrate that their thermal/heat output 

is useful. 
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However, the relief from mandatory purchase and mandatory sell obligations are not granted 

automatically to the existing contracts (PURPA, Title 18, § 292.309). Utilities are required to 

make an appeal to the FERC and decisions will be made on a case by case basis.  

 The total installed qualifying facility, as of 2000, was 45, 813 MW (Electric Power 

Annual, 2000). As of 2005, combined heat and power or cogeneration capacity in the United 

States is 66.9 thousand MW’s. (EIA-Electricity Capacity, 2006). This capacity is only 6.8% 

of the total generation capacity available in the country. Coal was the major fuel source for 

electricity generation. Nearly 49.7% of electricity in 2005 was generated using coal. Natural 

gas (18.7%) and Petroleum (3%) were the next mostly used fuel source. Renewable and non-

conventional fuel sources contributed only to about 2.7% of the total electrical energy 

generation. (EIA-Electricity Generation, 2006).  These statistics give credence to the claims 

of the qualifying facilities and PURPA contract supporters.  Given these conflicting claims 

and with the changes in the electricity industry due to re-structuring, it is crucial to evaluate 

the performance of cogeneration under PURPA and identify conditions under which it is 

justified. 
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CHAPTER 2. ECONOMIC PERFORMANCE OF COGENERATION 

UNDER PURPA 

In chapter 2 of the thesis we study the economic performance of cogeneration under PURPA. 

The chapter begins with a review of relevant literature followed by the mathematical 

modeling and solution of the four models – the CGP model and the three benchmark models. 

We then compare the total surplus associated with the optimal generation plans of the electric 

utility and cogeneration facility in each configuration to study the economic performance of 

cogeneration under PURPA. 

2.1 Literature Review  

Various aspects of cogeneration have been studied as early as 1970’s. The 

implementation of PURPA in 1978 brought a host of studies on cogeneration and PURPA in 

particular.  Studies such as, Puttgen and MacGregor (1989), Moleshi et al (1991), Venkatesh 

and Chankong (1995) and Chen and Hong (1996), focused on the optimal production policy 

for a cogeneration facility. The focus of these studies was more on the interpretation of the 

physical constraints of a cogeneration unit and determining the production policy that 

guarantees minimum cost. Algorithms with emphasis on economic dispatching of 

cogeneration units also came into focus and are still of interest as demonstrated by Guo et al 

(1996 ), Rao (2001)  and Chapa and Galaz (2004) . While Guo et al (1996), Rao (2001)  and 

Chapa and Galaz (2004) all focused on the solution techniques to solve the economic 

dispatch problem with cogeneration facilities, Guo et al (1996) was the only one to explicitly 

consider the feasible region constraints associated with cogeneration.   
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Joskow and Jones (1983) are one of the earliest studies on the economics of cogeneration. 

They focused on identifying conditions which lead to a profitable investment in cogeneration 

and concluded that the PURPA buyback rate, electricity prices and variable cost of operation 

determine the profitability of a cogeneration investment. Rose and McDonald (1991) also 

studied the economics of self-generation but concluded that the PURPA buyback rate by 

itself was not a significant determinant in the generation planning of cogeneration facilities. 

They concluded based on empirical evaluation that the electricity and steam demand faced by 

the cogeneration facility determine the generation plans of the facility.  Woo (1988) studied 

the inefficiency of avoided cost pricing in a regulated environment where the regulator is 

interested in maximizing social welfare. The paper concluded that in regulated systems with 

a positive profit criteria the avoided cost pricing mentioned in PURPA will be in efficient 

with respect to social welfare. 

Fox-Penner (1990) is one of the papers that focused on the strategic operational 

decisions of a cogeneration facility under PURPA. Cogeneration facilities have two 

incentives to generate electricity – to minimize cost of purchasing electricity from electric 

utilities to satisfy their demand (displacement mode) and to profit from selling electricity to 

the electric utilities  or market customers (arbitrage mode). Fox – Penner (1990) explicitly 

models the two modes with respect to a PURPA cogeneration facility. However, he does not 

consider the impact of the cogeneration facility’s generation decisions on the electric utility 

or strategic gaming between the electric (host) utility and the cogeneration (qualifying) 

facility.  
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Haurie et al (1992) study the strategic gaming between the host utility and the 

qualifying facility. They model the interaction as a Stackelberg game with the host utility as 

the leader and the qualifying facility as the follower. Though Haurie et al’s (1992) is similar 

to our model, they differ in certain critical and salient points. Haurie et al (1992) do not 

explicitly consider the PURPA constraint that specifies that the qualifying facility can only 

sell electricity that it has cogenerated to the host utility and the fixed nature of the PURPA 

buyback price that the host utility pays to the qualifying facility. In their model this price is 

endogenously determined. This is in direct conflict with concerns raised by the conventional 

utilities regarding the PURPA contracts (Hirsch, 1999).  If electric utilities had the freedom 

to choose the price at which they purchase electricity from the cogeneration facility then they 

would set the price in a manner that is beneficial for them and will be more amenable to the 

PURPA contracts. However, this is not the case and there is evidence that electric utilities are 

even willing to buy out PURPA contracts so that they need not accept cogenerated electricity 

(Danielsen, 1999). In addition, Haurie et al (1992) assume that the conventional utilities sell 

electricity at their average cost and buy electricity from the cogeneration facility at the 

utility’s marginal cost. Due to deregulation, utilities no longer find it profitable to sell 

electricity at their average cost and are currently selling at their marginal cost to be 

competitive. In addition, if the cogeneration facility was selling to the electric utility at the 

host utility’s marginal cost, then the host utility will be indifferent to the quantity of 

electricity sold to them by the cogeneration facility. Anecdotal evidence suggests otherwise 

(Hirsh 1999, Danielsen 1999).  
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Kwun and Baughman (1991) is another important paper that focused on the benefits 

of cogeneration and the optimal investment in cogeneration capacity. To determine the 

benefits of cogeneration, the study determines the optimum generation decisions and 

associated cost of an electric utility and an industrial facility that faces thermal demand 

without cogeneration individually. They then compare the cost with a jointly optimized 

global benchmark model with cogeneration.  

  This thesis differs from the above studies in two ways. The studies in literature that 

evaluate the strategic interaction of the cogeneration facility and the electric utility under 

PURPA were before deregulation came into effect. The second aspect not considered in 

available literature on cogeneration is the economic welfare implications of cogeneration 

under PURPA.  

 

2.2 Modeling Assumptions 

A1:The heat demand Sd of the thermal host is much greater than the thermal host’s electricity 

demand Qd.  Examples of such a cogeneration facility that serve such cogeneration/thermal 

host include a 20 MW Pacific Cogeneration facility in Washington. The facility provides 

electricity and heat to the Greater Western Malting facility with an average electrical load of 

4MW and a heat load of 90 MBtu/hr (“PURPA Resource Development” 1990).   

A2: The relationship between cogenerated electricity and heat is assumed to be a fixed ratio 

(power to heat ratio).  

A3: The cogeneration facility can discard excess heat or electricity without any disposal cost. 

A4:The electric utility is a vertically integrated utility.  Vertically integrated utilities are 



www.manaraa.com

15 

 

 

companies that handle all three aspects of electricity supply- generation, transmission and 

distribution. The customers of vertically integrated utilities are the retail customers 

comprising of the residential sector (residential homes), commercial sector (office and store 

buildings) and industrial sector.  Vertically integrated utilities are still a part of the United 

States electricity supply sector. Even though de-regulation has been in effect since late 

1990’s, a significant part of the country is still served by regulated monopolistic vertically 

integrated utilities. Even in states with a wholesale competition, parts of the state might be 

served by vertically integrated utilities due to transmission network constraints. For example 

in Texas, 15 % of the state’s load is outside of the ERCOT grid and include regions in the 

Texas pan handle, parts of northeast Texas, southeast Texas and El Paso and surrounding 

areas (AECT, 2007). These regions are serviced by vertically integrated utilities such as 

Southwestern Public service (pan handle), the Southwestern Electric Power Company 

(Northeast Texas), Entergy (Southeast Texas) and The Electric Company (El Paso and 

surrounding areas). Another example of a region served by a monopolistic electricity 

generator includes San Francisco (Borenstein and Bushnell, 2000) 

A5: In the CGP, HP and SCG models, the electric utility is the sole supplier of electricity to 

the retail electricity customers. In the IPP model the electric utility and cogeneration facility 

supply electricity to the retail electricity customers. However, the market structure is similar 

to a monopoly with a fringe with the electric utility as the monopoly and the cogeneration 

facility as the fringe supplier.  With deregulation the United States has seen the emergence of 

Non-Utility generators or NUG’s. These NUG’s do not own transmission or distribution 

services and hence use the utility’s transmission and distribution services to deliver 
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electricity to wholesale electricity customers or retail electricity customers( Philipson and 

Willis, 2006). NUG’s are mainly three types – Independent Power Producers, Qualifying 

facilities and Exempt Wholesale Generators. Independent Power Producers are private 

companies that generate and consume electricity and sell surplus electricity. While wholesale 

competition is prevalent in many states across the country only a few states have 

implemented retail competition. However, in a few cases, NUG’s participate in retail 

electricity sales. In 2006, data collected by the Energy Information Administration (EIA) 

using form EIA-920 had 116 NUG’s that supplied electricity to retail customer. In each case 

the NUG’s handled a small portion of the retail sales while the remaining was satisfied by the 

local utility (EIA, 2006a) 

A6: The electric utility will always sell the cogenerated electricity it purchases from the 

cogeneration facility to its retail electricity customers.  

A7: The models do not consider capacity constraints, transmission constraints or emission 

control constraints with regards to both the electric utility as well as the cogeneration facility. 

It is assumed that the electric utility being a vertically integrated utility has sufficient 

capacity to meet the maximum demand of the retail electricity customers and has access to 

transmission networks. 

A8: When the electric utility and cogeneration facility are engaged in a Stackleberg game 

(CGP, CGS and IPP models), complete information is assumed between the two players.  

 

 In this thesis, for simplification purpose we use Mega British Thermal Units (MBtu) 

to specify all energy products. This is to specify both the electrical and heat energy output in 
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the same units, instead of Megawatt-hour for electricity (MWh) and MBtu for heat energy. 

We use the conversion 1 MWh = 3.4121 MBtu to convert electricity prices are generally 

specified in $/MWh to $/MBtu. An MBtu is equal to a million Btu’s. In the paper, the 

variables and parameters are introduced with the appropriate units. After the initial definition, 

the variables and parameters are referred to without their units. For easy reference a list of all 

variables and parameters used in chapter 2 along with their definition and units is presented 

in Table 1 

Symbol Description 

Decision Variables: 

xu   Electricity generated by electric (host) utility (MBtu). 

xcg  Electricity cogenerated by the cogeneration (qualifying) facility (MBtu).  

ycg Heat energy cogenerated by the cogeneration (qualifying) facility (MBtu)  

qs Electricity sold by the qualifying facility to the host utility as part of the PURPA contract (MBtu). 

(In CGP model only)  

qb Electricity purchased by the qualifying facility from the host utility as part of the PURPA contract 

(MBtu).  (In CGP model only) 

Pr Electricity price paid by the retail electricity customers ($/MBtu). 

Parameters:  

Qd Electricity demand of the service facility (MBtu).  

Sd Heat demand of the service facility (MBtu).  

Ps PURPA buyback price at which the qualifying facility sells electricity to the host utility as part of 

the PURPA contract ($/MBtu).  

α Power to heat ratio of the cogeneration facility (constant).  

Table1. Notation in chapter 2 
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Host electric utility 

Retail electricity customers 

QT 

qs qb 

Qualifying Facility 

 Cogeneration facility 

Thermal host 

Qd Sd 

2.3 Cogeneration under PURPA (CGP) configuration mo del 

In the CGP model the electric utility and cogeneration facility have an existing PURPA.  The 

cogeneration facility is owned by the thermal host and together they are referred to as the 

qualifying facility. Since the cogeneration facility has a valid PURPA contract with the 

electric utility, it is referred to as the PURPA host utility. The qualifying facility sells 

electricity to the host utility at a pre-determined price stipulated in the PURPA contract. In 

the CGP model, as part of the PURPA contract, the qualifying facility can purchase 

electricity from the host utility at the prevailing electricity price in an independent 

transaction.  The energy generation system configuration of the CGP model is shown below 

in Figure 2. 

 

 

 

 

 

 

 

 

Figure 2.  Cogeneration under PURPA (CGP) configuration model 
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 In the CGP configuration the host utility and qualifying facility are engaged in a 

Stackleberg game with the host utility as the leader and the qualifying facility as the follower. 

The leader in a Stackelberg game is the dominant player who can actively make decisions 

that affect both players.  In the CGP configuration, the host utility decides the electricity 

price to the retail electricity customers and is the dominant player and the Stackelberg leader. 

The follower is the less dominant player whose decisions are based on the decisions of the 

leader. In the CGP configuration, the qualifying facility takes the electricity price, 

��($/MBtu), as given and determines its optimal generation plan and is the Stackelberg 

follower. 

 The Stackelberg game is a sequential game with the leader making her decisions first 

and the follower making his decisions after observing the leader’s decisions. (Gibbons, 1992, 

pg 58). In addition, the leader is aware of the fact that the follower will observe the leader’s 

decision and then make his decision.  It is assumed that both players have perfect 

information, i.e. both players are fully aware of their respective payoffs for any combination 

of strategy/action available to them. The Stackelberg game between the host utility and the 

qualifying facility is played as follows, 

1. The host utility, as the leader, announces the electricity price, ��. The host utility 

determines the electricity price by choosing its generation quantity, �� (MBtu). However, 

the host utility as the leader, anticipates the response of the qualifying facility (follower) 

to the electricity price, �� before he announces the price �� . The generation quantity �� is 

the action set of the leader (host utility).  The payoff associated with the action set, is the 

profit that the host utility gains by selling electricity in the wholesale market at the 
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associated electricity price, ��. It should be noted that the electricity sold by the host 

utility in the market includes the cogenerated electricity sold to it by the qualifying 

facility as part of the PURPA contract and excludes the electricity sold by the host utility 

to the qualifying facility. 

2. The qualifying facility observes the electricity price ��  and assuming that its decisions 

will not have an impact on the electricity price makes the following decisions,  

o The quantity of electricity and heat to cogenerate, ��� (MBtu) and 	��(MBtu) 

respectively, given that the electricity demand, 
� (MBtu), and heat demand, 

 �� (MBtu), of the thermal host has to be satisfied. 

o The quantity of electricity to purchase from the host utility � (MBtu) at the electricity 

price, �� to satisfy part or all of the thermal host’s electricity demand 
�.   

o The quantity of cogenerated electricity to sell to the host utility � (MBtu) as part of 

the PURPA contract at the PURPA buyback price, ��($/MBtu)  

The factors that affect the qualifying facilities decisions are the cost of purchasing electricity 

from the host utility i.e. the electricity price (��), the cost of cogeneration, �������, 	��� ($), 

the electricity (
�� and heat demand (��) respectively of the thermal host and PURPA 

buyback price ��, at which the qualifying facility can sell electricity to the host utility. Hence 

the action set of the qualifying facility is characterized by the set of decisions 

(���, 	��, �, �� that satisfy certain constraints that will be described in section 2.3.1 of this 

chapter. The payoff associated with the decisions of the qualifying facility is the profit it 

gains by selling cogenerated electricity to the host utility at the PURPA buyback price �� and 

the satisfaction of the energy demands of the thermal host. 
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 The solution to the Stackelberg game described above is determined using backward 

induction (Gibbons, 1992, pg 57). Let ��� and ��� be the optimal strategies for the leader and 

the follower. In backward induction method, the follower maximizes his profit for each 

strategy of the leader i.e. determines �������.  The function ������� is called the best 

response or reaction function of the follower. We then determine the leader’s strategy that 

maximizes her profit, given the reaction/response of the follower, i.e. the leader identifies 

��� that maximize his profit, �� ��� , ��������. (Cachon et al (2003), Gibbons (1992)) 

  In the Stackelberg game of the CGP model, we first determine the optimal generation 

plan of the qualifying facility for each value of the electricity price ��. The generation 

planning problem of the qualifying facility is an optimization problem. The optimal solution 

to the qualifying facility’s generation planning problem with the electricity price �� as given 

is called the best response function or reaction function of the follower.  We then find the 

host utility’s generation plan that maximizes his profit, given the best response of the 

qualifying facility to his decisions. 

 The qualifying facility’s generation planning problem is described in subsection 2.3.1 

along with the reaction function of the qualifying facility. This is followed by the host 

utility’s generation planning problem in subsection 2.3.2.  The equilibrium solution to the 

Stackelberg game in the CGP configuration and the associated total surplus are described in 

subsection 2.3.3  

2.3.1Qualifying facility’s generation planning prob lem 

The qualifying facility’s generation planning problem is a profit maximization problem. The 

qualifying facility determines its optimal cogeneration outputs – electricity (���� and useful 
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thermal energy or heat (	���. The qualifying facility profits by selling electricity to the host 

utility and has to satisfy the electricity and heat demand of the thermal host. 

The profit maximization problem (P1) of the qualifying facility is presented below. 

 ����, ���, 	��, � ������  ��� ! �������, 	��� ! ���      (1)   

s.t  � " ���          (2) 

	�� # ��           (3) 

���  $	��           (4) 

��� ! � % �  
�           (5) 

� # 0; � # 0          (6) 

where ���  � % '��� % (���) % *	�� % +	��) % ,���	�� is the cost of cogeneration.  The 

cost of cogeneration is a quadratic function that is used frequently in the economic dispatch 

literature for cogeneration systems (Guo et al 1996; Rao 2001; Chapa and Galaz 2004). The 

profit function ������, of the qualifying facility consists of three terms corresponding to the 

revenue from selling cogenerated electricity to the host utility, the cost of cogeneration and 

the cost of purchasing electricity from the host utility.   

 The constraints in the qualifying facility’s generation planning problem P1 

can be classified as regulatory constraint(s), demand constraints, operational constraint(s) and 

non-negativity constraints. The regulatory constraint specified by inequality (1) regulates the 

simultaneous sale and purchase of electricity by the qualifying facility from the host utility 

(Fox-Penner, 1990; Spiewak and Weiss (pg 30), 1997). The constraint is part of PURPA to 

prevent qualifying facilities from exploiting host utilities by buying electricity from them (at 
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a lower price) and selling the same electricity back (to them at a higher price). The demand 

constraints associated with the electricity and heat demand of the thermal host are specified 

by equation (3) & (4) respectively. It is noted that the electricity demand constraint is a strict 

equality since any excess electricity is sold to the host utility. The heat demand is a lower 

bound on the heat output of cogeneration since it is possible that the qualifying facility might 

generate more heat than required to sell the associated additional electricity to the host utility. 

Equation (5) is the operational constraint that specifies the electricity cogenerated for each 

unit of useful heat that is generated by the cogeneration unit. The power-to heat ratio of the 

cogeneration unit is utilized to specify this relationship (Sundberg and Henning, 2002). The 

power to heat ratio is defined as the ratio of electricity/power production to useful heat/steam 

production of a cogeneration unit (Spiewak and Weiss, 1997).  The non-negativity 

constraints in P1 are the two non-negativity constraints associated with the electricity trading 

variables,� and � specified by equation (6).  

 The decision variables 	�� and � are eliminated from problem P1 using the equality 

constraints (4) and (5). The four variable problem P1 is represented by the equivalent two 

variable profit maximization problem (P2) given below. 

����, ���  ������  ��� ! ���� ! �-������� % ����� ! ��
�     (7)  

 s.t 
./ ��� #  ��          (8) 

� " ���          (9) 

� # ��� ! 
�          (10) 

� # 0          (11)  
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where �-�������  � % (.��� % ()���)  is the modified cogeneration cost with  
�/01�/12/0  () 

and  ' % �/   (..  

 The objective function ������of P2 is linear in � and quadratic in ���. Due to 

inequality (9) and by the assumption that �� is much greater than 
� , the non-negativity 

constraint on � becomes redundant.  Hence equations (8) and (10) provide the lower and 

upper bound on � respectively. The objective function being linear in �, the optimal value 

of � will be at one of its bounds - the upper bound, ��� or the lower bound, ��� ! 
�. The 

criteria based on which the optimal value of �will be at its upper or lower bound is the 

variable’s coefficient in the objective function. If �� 3 ��, the coefficient of � in ������ is 

positive and hence the optimal value of � will be at its upper bound of ���. If �� 4 ��,  the 

coefficient of � in ������ is negative and hence the optimal value of � will be at its lower 

bound of ��� ! 
�.  If ��  ��, then the qualifying facility and the host utility are indifferent 

to the quantities of electricity traded between them.  

 The optimal value of � provides certain insight into the qualifying facility’s strategy 

for trading electricity i.e. the qualifying facility either sells all the cogenerated electricity to 

the host utility  or  it satisfy’s the thermal host’s electricity demand and sells the surplus 

cogenerated electricity to the host utility.  We include the reaction of the qualifying facility 

when  ��  �� with the reaction of the qualifying facility when �� 4 ��.   

 The qualifying facility’s generation planning problem (P2) further reduces to the 

determining the optimal cogenerated electricity ��� under two cases – Case (a) when �� 3 �� 

and Case (b) when �� 4 �� . 
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Case (a): In this case, the objective of problem (P2) reduces further to give us problem (P3) 

as follows,  

������  ������  ����� ! �-������� ! ��
�   s.t  ��� #  $��      (12) 

The only constraint associated with this problem is the heat demand constraint. Problem P3 

has a nonlinear objective and a linear constraint, the solution to which can be obtained from 

its first order necessary conditions (FONC). The first order necessary are also the sufficient 

condition since the profit function ������, is concave w.r.t ��� are 

56789:;
5<9:  �� ! (. ! 2()��� = 0         (13) 

����>?  @AB�C)�0            (14) 

where ����>? is the optimal non-binding solution to problem P3. When the constraint is active, 

the optimal binding solution is ����?  $��.  Therefore, we have that the optimal ��� will be 

������  ���D @AB�C)�0 , $��E         (15) 

Case (b): In this case (b), the objective of problem P2 is reduced to form problem (P4) as 

follows, 

������  ������  ����� ! �-������� ! ��
� s.t  ��� #  $��    (16) 

From equations (12) and (16) we see that the objective function in Case (a) and Case (b) 

differ only in the third constant term which can be ignored for the purpose of determining the 

optimal ���.  It is interesting to note that the difference in the constant term of the objective 

functions in equation (12) and (16) is related to how the electricity demand 
�, of the thermal 

host is satisfied. In equation (12) the term, ��
�, is the cost to the qualifying facility in 
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purchasing electricity from the host utility to satisfy 
�. In equation (14) the term, ��
�, is 

the revenue forgone by the qualifying facility by satisfying the electricity demand of the 

thermal host  from the cogenerated electricity ��� instead of selling the same quantity to the 

host utility. From equation (14) the optimal heat cogenerated 	��, is determined using 

equation (5) as 

	�����  ���D @AB�C)�0 , $��E         (17) 

We note from equations (14) and (17) that optimal cogenerated electricity and heat are 

independent of ��. However, the decision on how best to satisfy the electricity demand of the 

thermal host is dependent on the electricity price Pr.  In effect, the qualifying facility is faced 

with two distinctive and separate optimization problems,  

1. What are the optimal cogeneration outputs for a given set of cost, revenue and demand 

parameters? 

2. How should electricity be traded with the host utility for a given set of cogenerated 

electricity and electricity price? 

Reaction function of the qualifying facility:  In the CGP model the qualifying facility and 

the host utility are engaged in a Stackelberg game. The qualifying facility being the follower 

reacts to the decisions of the host utility, the leader. The qualifying facility reacts to the 

electricity price Pr, by deciding the quantity of electricity that it wishes to trade with the host 

utility. As determined above, only the quantity of power traded depends on the electricity 

price. The cogeneration outputs of electricity and heat are independent of the electricity 

price. Therefore the reaction function of the qualifying facility to the electricity price Pr is 

given below 
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���  F ��� when ��  3 �� ��� ! 
�when �� " �� Gand ���  F
� when ��  3 �� 0 when �� " �� G    (18) 

 Similar to Fox-Penner (1990) we refer to case (a) and case (b) as the arbitrage mode 

(AM) and non-arbitrage mode (NAM). The trading strategy of the qualifying facility is the 

basis for the names of the cases. In the arbitrage mode (AM), the qualifying facility sells the 

entire quantity of cogenerated electricity to the host utility and purchases electricity from the 

host utility to satisfy the thermal host’s electricity demand. In the non-arbitrage mode 

(NAM), the qualifying facility satisfies the electricity demand of the thermal host from the 

cogenerated electricity and sells only the excess electricity to the host utility. In each mode of 

trading, the cogeneration facility will generate a quantity of electricity such that the 

associated heat is equal to the heat demand of the thermal host or a quantity of electricity 

such that the associated heat will be greater than the heat demand of the thermal host.  

2.3.2 Host utility’s generation planning problem 

The generation planning problem of the host utility is also a profit maximization problem.  

The profit maximization problem (P5) of the host utility in the CGP configuration is as 

follows 

�����  �H����  ���
I�
I ! ������ ! ������� % ���
I������    (19) 

where ���
I�  J ! K
I is the inverse demand function of retail electricity customers and 

������  L % M�� % N��) is the quadratic cost function associated with electricity generation 

for the power level of �� (Wood and Wollenberg, 1996). 
I (MBtu) is the total electricity 

supply to the retail electricity customers. Equation (19) is the profit function of the host 

utility.  
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 The total electricity supply to the retail electricity customers is a function of the host 

utility’s generation quantity (��), the cogenerated electricity sold to the host utility by the 

qualifying facility (�)  and the electricity purchased by the qualifying facility from the host 

utility (�).  


I  �� % ���O� ! ���O�         (20) 

Using the equation (4) we can eliminate � from equation (20) to obtain 


I  �� % ��� ! 
�         (21) 

Equation (21) states that the total electricity supply to the retail electricity customers  is a 

function of the host utility’s generation quantity (��), the qualifying facility’s cogenerated 

electricity quantity (���) and electricity demand of the thermal host (
�). The host utility 

being a Stackelberg leader is fully aware of this and makes her decision accordingly. It 

should also be noted that, since ��� and 
� are both remain constant, for all feasible values 

of ��, the host utility has the freedom to choose an electricity price that maximizes its own 

profit. The profit function �H����, of the host utility consists of four terms – revenue from 

electricity sales to the retail electricity customers, cost of generation, cost of purchasing 

cogenerated electricity from the qualifying facility as part of the PURPA contract and the 

revenue from selling electricity to the qualifying facility at the electricity price ��  in a 

bilateral transaction. The profit of the host utility is a function of the reactions of the 

qualifying facility.   

Equation (18) gives the reaction function of qualifying facility w.r.t. the electricity 

price, ��. To determine the Stackelberg equilibrium solution we substitute the value of � and 

� in problem (P4) and solve for the optimal ��.  From equation (18) we have the reaction 
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function of the qualifying facility to be a discontinuous function with the discontinuity 

occurring when the electricity price, ��becomes greater than or equal to the PURPA buyback 

price, ��, at which the qualifying facility sells power to the host utility. Since the electricity 

price is a function of the host utility’s generation quantity the discontinuity of the reactions 

function at �� # ��  leads to the following condition on the generation quantity of the host 

utility,  ��  

.P �J ! �� ! K���� ! 
��� # ��         (22) 

 The reaction of the qualifying facility differs based on the generation quantity of the 

host utility and the electricity price ��. The quantity of electricity traded by the qualifying 

facility remains a constant for all �� 4 ��. Similarly, the quantity of electricity traded by the 

qualifying facility remains a constant (different from when �� 4 ��) for all �� # ��. The two 

trading modes of the qualifying facility lead to two profit maximization problems for the host 

facility.  

Non-Arbitrage Mode (QR # QS ): In this case the reaction of the qualifying facility from 

equation (18) is substituted in the profit function �H����of the host utility. The profit 

maximization problem (P6) of the host utility is modified as follows, 

�����  �H����  J
I ! K
I) ! ������ ! ������ ! 
��       (23) 

s.t    �� " .P �J ! �� ! K���� ! 
���            (24) 

The problem P6 of the host utility is a simple non-linear problem. The corresponding 

Lagrangian function is  

TH����  J
I ! K
I) ! ������ ! ������ ! 
�� ! U.����� " .P �J ! �� ! K���� ! 
����  
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(25)   

To determine the optimum generation quantity of the host utility, we use the concept of 

active and inactive constraints (Luenberger 2003). We first determine the optimal �� by 

considering the case where �� is strictly less than the bound specified in equation (24).  In 

this case, the host utility’s profit maximization problem is a nonlinear unconstrained 

problem. The profit of the host utility  �H����, in problem P6 is nonlinear and concave w.r.t ��. 

Therefore the optimal �� can be determined from the first order necessary and sufficient 

conditions as follows 

56VW9:;
5<W  J ! 2K��� % ��� ! 
�� ! M ! 2N��  0.      (26) 

���_>?_YZ[  \B)P�<9:B]^�B[)�P1Y�                                        (27)    

where  ���_>?_YZ[ is the non-binding optimal generation quantity of the electric utility if the 

reaction of the qualifying facility to the electricity price is to operate in the non-arbitrage 

mode (NAM).  

To determine the condition under which the constraint will be binding we use the FONC for 

constrained optimization problem  

5_VW9:;
5<W  J ! 2K��� % ��� ! 
�� ! M ! 2N�� ! U.���  0     (28) 

5_VW9:;
5`C9:;  .P aJ ! �� ! K���� ! 
��b ! ��  0      (29) 

U.������ ! .P aJ ! �� ! K���� ! 
��b�  0       (30) 

U.��� # 0           (31) 
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Equation (27) is the non-binding solution to problem P6. The optimal solution to problem P6 

is binding with ���_?_YZ[  .P aJ ! �� ! K���� ! 
��b , when U.��� # 0.  When the optimal 

solution is binding, 

 U.���  )YP<9:1)@A�Y1P�B)Y\BP�[1\�BP]^)YP        (32) 

Equation (32) leads to a limit on the electricity demand 
� of the thermal host based on 

which the optimal generation quantity �� of the electric utility is such that �� # ��. Therefore 

the optimal generation of the electric utility in the Non-Arbitrage mode is given below, 

�����_YZ[  c\B[B)P�<9:B]^�)�P1Y� ,  when  
� 3 )YP<9:B)Y\B�[1\�P1)@A�Y1P�)YP.P aJ ! �� ! K���� ! 
��b, otherwise  
G    (33) 

where �����_YZ[ is the optimal generation quantity of the electric utility if the reaction of the 

qualifying facility to the electricity price is to operate in the non-arbitrage mode (NAM).  

Arbitrage Mode (QR 4 QS ): In this case the profit maximization problem (P7) of the host 

utility is modified as follows, 

�����  �H����  J
I ! K
I) ! ������ ! ����� % 
� �J ! K
I�      
s.t  �� 3 .P mJ ! �� ! K���� ! 
��n            (34) 

The problem P7 is a non-linear problem and the optimal �� can be determined by using the 

FONC to be 

���_>?_Z[  \B)P<9:1P]^B[)�P1Y�         (35) 

where  ���_>?_Z[ is the non-binding optimal generation quantity of the electric utility if the 

reaction of the qualifying facility to the electricity price is to operate in the arbitrage mode 
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(AM).  Since the constraint in P7 is a strict inequality, the optimal non-binding solution in 

equation (35) should be strictly less than the upper bound specified in equation (34). The 

condition that ensures this is .P  �2NJ % �M % J�K ! 2�N % K��� % K�2N % K�
� !
2NK���� 4 0. Similar to the non-arbitrage case we can convert the condition to a limit on the 

electricity demand 
� of the thermal host. Therefore the optimal generation optimal 

generation quantity �� is such that �� 4 �� is 

�����_Z[  \B[B)P<9:1P]^)�P1Y� ,  when  
� 4 )YP<9:B)Y\B�[1\�P1)@A�Y1P�P�)Y1P�     (36) 

where  �����_Z[ is the optimal generation quantity of the electric utility if the reaction of the 

qualifying facility to the electricity price is to operate in the arbitrage mode (AM).  Let 

CN1  )YP<9:B)Y\B�[1\�P1)@A�Y1P�P�P1)Y�  and CN2  )YP<9:B)Y\B�[1\�P1)@A�Y1P�)YP .  (37) 

2.3.3 Equilibrium solution of CGP model  

We next define the characteristics of the equilibrium solution to the Stackelberg game in the 

CGP configuration. An equilibrium solution of a game is the solution/strategy from which no 

player in the game has any incentive to deviate from. (Gibbons, 1992) 

Definition of Stackelberg Equilibrium: The equilibrium solution to the Stackelberg game in 

the CGP configuration is defined as the set of decisions, {���, ���, ����, 	���, ��, ��E that 

satisfy the following conditions 

• The generation quantity �� and the associated electricity price �� maximizes the host 

utility’s profit when she has a valid PURPA contract with a qualifying facility as part 

of which she trades electricity.  
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• The cogeneration output of electricity ��� and heat  	��, electricity sold to the host 

utility � and electricity purchased from the host utility � for a given electricity price 

�� maximizes the qualifying facility’s profit and satisfies the electricity and heat 

demand of the thermal host 

The CGP configurations Stackelberg game has six possible equilibrium solutions, only one 

of which will occur for a given set of parameters D$, J, K, M, N, ��, 
�, (., ()E.  From 

equations (33) and (36) we get a mutually exclusive condition based on the parameter set that 

result in a unique equilibrium solution. Though there are six possible equilibrium solutions 

we focus on analyzing the four described below. This is because the behavior of the 

qualifying facility is the same as in the case of the non-arbitrage solutions described below. 

The four possible equilibrium solutions of interest are 

Arbitrage/Binding solution: The qualifying facility cogenerates only the quantity of 

electricity that is required to satisfy the heat demand of the thermal host. (Binding: ���  
$��). The qualifying facility sells all the cogenerated electricity to the host utility and 

purchases electricity from the host utility to satisfy the electricity demand of the thermal host. 

This solution occur when the PURPA buyback price is lower than the marginal cost of 

generating at the level required to satisfy of the thermal host and the electricity demand of the 

thermal host is lower than CN1 a threshold value based on the remaining parameter values.  

Arbitrage/ Non-Binding solution: The qualifying facility cogenerates more than the quantity 

of electricity that is required to satisfy the heat demand of the thermal host. (Non-Binding: 

 ��� 3 $��). The qualifying facility sells all the cogenerated electricity to the host utility and 

purchases electricity from the host utility to satisfy the electricity demand of the thermal host. 
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This solution occurs when the PURPA buyback price is higher than the marginal cost of 

generating at the level required to satisfy the heat demand of the thermal host and the 

electricity demand of the thermal host is lower than CN1 a threshold value based on the 

remaining parameter values. 

Non-Arbitrage/Binding solution: The qualifying facility cogenerates only the quantity of 

electricity that is required to satisfy the heat demand of the thermal host. (Binding:  ���  
$��). The qualifying facility satisfies the electricity demand of the thermal host from the 

cogenerated electricity and sells only the surplus electricity to the host utility. This solution 

occurs when the PURPA buyback price is lower than the marginal cost of generating at the 

level required to satisfy the heat demand of the thermal host and the electricity demand of the 

thermal host is higher than CN2 a threshold value based on the remaining parameter values. 

Non-Arbitrage/Non-Binding solution: The qualifying facility cogenerates more than the 

quantity of electricity that is required to satisfy the heat demand of the thermal host. (Non-

Binding:  ��� 3 $��). The qualifying facility satisfies the electricity demand of the thermal 

host from the cogenerated electricity and sells only the surplus electricity to the host utility.  

This solution occurs when the PURPA buyback price is higher than the marginal cost of 

generating at the level required to satisfy the heat demand of the thermal host and the 

electricity demand of the thermal host is higher than CN2 a threshold value based on the 

remaining parameter values. 

A summary of the equilibrium solution for the Stackelberg game between the electric utility 

and cogeneration facility is provided in Table 2.   
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Case QRrst uvrst ursrst 

Non Binding Case 


� 4 CN1 �� 4 �� J ! M ! 2K��� % K
�2�K % N�  
�� ! (.2()  

CN1 " 
� 4 CN2  ��  �� aJ ! �� ! K���� ! 
��bK  
�� ! (.2()  


� 3 CN2 �� 3 �� J ! M ! 2K���� ! 
��2�K % N�  
�� ! (.2()  

Binding Case 


� 4 CN1 �� 4 �� J ! M ! 2K��� % K
�2�K % N�  
$�� 

CN1 " 
� 4 CN2  ��  �� aJ ! �� ! K���� ! 
��bK  
$�� 


� 3 CN2 �� 3 �� J ! M ! 2K���� ! 
��2�K % N�  
$�� 

Constants CN1  �)YP<9:B)Y\B�[1\�P1)�Y1P�@A�   P�P1)Y�  ; CN2  )YP<9:B)Y\B�[1\�P1)@A�Y1P�)YP  ; 

()  �/01�/12/0  ;  (.  �/1�/ ; 

Table 2. Equilibrium solution(s) of the CGP configuration Stackelberg game 

The consumer surplus corresponding to the equilibrium solution of the CGP model is given 

by 

�����  w���� % w�
�� % w�
I���� ! ���
I����
I���    (37) 

w���� and w�
�� is the utility to the thermal host in consuming �� MBtu of useful heat and  


�  MBtu of electricity. w���� and w���� are derived from the utility of the consumers who 

utilize the thermal host’s products/process. Since w���� and w�
��will remain constant 

among all models their mathematical form is not explicitly specified in the paper. In all the 

four models, there are three types of participants – the retail electricity customers who are 
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consumers, the electric (host) utility who is a producer only and the qualifying facility unit 

which is both a producer (cogeneration facility) and a consumer (thermal host). In the 

consumer surplus expression we consider the consumer surplus of the retail electricity 

customers and the consumer surplus associated with the qualifying facility. In the CGP 

model the cost of generating �� MBtu of useful heat and  
� MBtu of electricity is accounted 

in the profit function of the qualifying facility. Hence the terms are not included in the 

consumer surplus expression in equation (37). w�
I���� is the utility to the retail electricity 

customers in consuming 
I���MBtu of electricity.  The utility to the retail electricity 

customers is the area under the inverse demand function between (0, 
I���). 

w�
I����  x �J ! K��]y9:;z � *��  GJ�� ! P<W 0)  {z
]y9:;  J
I ! P]y9:;0

) .  

Therefore, �����  w���� % w�
�� % P�]y9:; �0)       (38) 

The total surplus associated with the CGP model is the sum of the producer surplus and the 

consumer surplus. In the CGP model the producer surplus is the profit to the host utility and 

the qualifying facility. 

|����  ����� % �����  ����� % �H���� % ������       (39) 

|����  w���� % w�
�� % w�
I���� ! ������
I����
I��� % ������
I����
I��� ! �������� !
��� % ������
I����
� % ��� ! �-�������� ! ������
I����
�  

|����  w���� % w�
�� % w�
I���� ! ��������� ! �-����������    (40) 
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Illustrative Numerical Example: 

An illustrative numerical example with hypothetical data is provided in this section. The 

parameter values used in the example are provided in Table 3. 

Parameter Numerical Value 

Ps= PURPA buyback price at which the qualifying facility sells electricity to the 

host utility ($/MBtu) 

90  

J = Vertical intercept of the inverse demand function faced by the utility 120 

K = Slope of the inverse demand function faced by the utility 0.02 

$ = Power to heat ratio of the cogeneration unit 0.68 

a, b, c, d, e, f = cost coefficients of the cogeneration cost 250, 14.5, 0.03, 4.2, 

0.03, 0.03 

l, m, n  = cost coefficients of the host utility generation unit 1700, 7.8, 0.009 


� = Electricity demand of the thermal host (MBtu) 50 

�� = Heat demand of the thermal host (MBtu) 500 

Table 3. Parameter Values used in the Numerical Example 

Step 1: We first characterize the reaction function of the qualifying facility. To do this, we 

being by computing the value of unconstrained ���. We do this by inputting the values in the 

parameter table in 
@AB�C)�0  to obtain 249.09 MBtu. We next compute the value ��� at its bound, 

$�� which is 340 MBtu. From equation (15), we have that ������  ���D@AB�C)�0  , $��E 
Therefore the optimal cogenerated electricity and heat are, ������  340 MBtu and 	�����  
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500 MBtu.  From equation (18) we get the qualifying cogeneration facility’s reaction 

function as follows, 

���  F340  when �� 3 �� 240 when �� " �� G and ���  F50 when �� 3 �� 0 when �� " �� G 
Since  ������  @AB�C)�0  340 the optimal generation plan of the qualifying facility is binding in 

the heat demand constraint, i.e. the cogeneration facility generates only the quantity of 

electricity whose associated heat will satisfy the heat demand of the thermal host.  

Step 2: We next compute the optimal generation plan for the host utility and the equilibrium 

solution to the Stackelberg game in the CGP model.  

We calculate the value of CN1 and CN2 in equation (37) as follows, 

CN1  �)YP<9:B)Y\B�[1\�P1)�Y1P�@A�   P�P1)Y�  824.2105 and   

CN2  )YP<9:B)Y\B�[1\�P1)@A�Y1P�)YP  1740   
From equations (33) and (36) we have that the unique equilibrium solution of the CGP 

model’s Stackelberg game is based on the value of the electricity demand of the thermal host 


� compared to CN1 and CN2.  
�  50 in the example, we have that 
� 4 CN1, therefore 

the equilibrium solution of the Stackleberg game of the CGP model is the arbitrage-mode of 

operation for the qualifying facility and the generation quantity of the electric utility that will 

ensure that is, from Equation (36), �� ���  1734.483 (MBtu). The associated electricity price 

is �� ���  79.510 ($/MBtu) and the profit to the host utility is �H����  94262.48 �$�. The 

qualifying facility’s decisions at the equilibrium solution are given below ���  340 MBtu, 
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���  50 MBtu, ������  340 MBtu and 	�����  500 MBtu. The profit associated with the 

above decisions is ������  3002 �$�.  

 

2.4 Cogeneration facility as an Independent Power P roducer (IPP) 

model 

The most relevant benchmark of the cogeneration under PURPA (CGP) configuration is the 

cogeneration facility as an Independent Power Producer configuration (IPP). The IPP model 

is where the cogeneration facility sells electricity directly to the retail electricity customers. 

The IPP model is the most relevant benchmark due to the current partially de-regulated state 

of the electricity industry and the partial repeal of mandatory purchase requirement of 

PURPA. The number of NUG’s that serve retail electricity customers has almost doubled in 

the last three years with 65 NUG’s in 2004 to 116 NUG’s in 2006 (EIA, 2006a). In addition, 

even though wholesale competition is considered a pre-requisite for retail competition in 

states such as Texas which have a combination of wholesale and retail competition with 

regulated monopolistic vertically integrated utilities, the options to the vertically integrated 

markets in terms of retail competition are being considered (AECT, 2007). Since many of the 

PURPA contracts that were signed in the early 80’s are expiring and it is a critical time that 

the alternative options available to cogeneration facilities should be analyzed.  

 The electric utility is still the more dominant electricity supplier to the retail 

electricity customers. The IPP configuration is based on configurations that have come into 

existence after the de-regulation of the electricity industry and the opening of access to 

transmission and distribution services to NUG’s. Examples of such an NUG is a 11.25 MW 
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cogeneration plant which supplies electricity and steam to 25 buildings in downtown 

Rochester MN including the Mayo Clinic, Rochester Methodist Hospital, Charter house and 

Sunstone Corporation Hotel. The plant is owned by Mayo Clinic and the Rochester 

Methodist Hospital.  The majority of the city of Rochester, MN is serviced by the Rochester 

Public Utilities the local municipal utility.  The Rochester Public Utilities is the largest 

municipal utility in Minnesota with over 45, 000 customers and a capacity of 193 MW (RPU, 

2006).  Another example is the Robert Muller Energy Center in Austin TX, a 4.5 MW gas-

fired cogeneration plant that serves the Dell Children’s Hospital with electricity and steam.  

It exports its power to the grid. The owned and operated by the Austin Energy, the local 

electric utility and is paid the prevailing electricity rates. 

  In the IPP model the electric utility and the cogeneration facility are engaged in a 

Stackelberg game with the electric utility as the leader and the cogeneration facility as the 

follower.  This is because even though the IPP’s supply electricity to retail customers the 

number of customers they serve is much smaller compared to the local utility. Hence the 

price they charge and the quantity they supply will be heavily influenced by the local utility.  

Since we were unable to identify the exact mechanism by which the retail prices are set by 

these IPP’s we assume that they take the price set by the local utility and determine the 

quantity they wish to supply.  Hence the IPP model is similar to the CGP model with the 

critical difference that the price at which the cogeneration facility sells electricity is 

determined by the electric utility. The energy generation system configuration is shown in 

Figure 3. 
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Figure 3. Cogeneration facility as an Independent Power Producer (IPP) configuration 

model 

2.4.1 Cogeneration facility’s generation planning p roblem 

The cogeneration facility’s generation planning problem in the IPP configuration is the profit 

maximization problem given below  

������  ������  ������ ! 
�� ! �������, 	���       (41) 

s.t  	�� # ��           (42) 

���  $	��           (43) 

Similar to the CGP model the decision variable 	�� can be eliminated using equation (43) to 

obtain the following profit maximization problem, 

������  ������  ������ ! 
�� ! �-�������  s.t  ��� # $��    (44) 

where ���������  is the modified cost of cogeneration, the same as in the CGP model. The 

optimal solution to the cogeneration facility’s profit maximization problem can be obtained 
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from the FONC using the concept of active and inactive constraints. The unconstrained 

solution to the cogeneration facility’s generation planning problem is given below 

 ����_>?  @�B�C)�0  ;         (45) 

where ����_>?is the unconstrained optimal cogenerated electricity in the IPP model.  

The optimal binding solution to the cogeneration facility’s profit maximization problem 

is ����_?  $��. Therefore the optimal cogenerated electricity in the IPP model is   

������  ���D@�B�C)�0 , $��E         (46) 

Reaction function of the cogeneration facility: In the IPP model the optimal cogenerated 

electricity is a function of the electricity price, Pr. Therefore the amount of electricity that the 

cogeneration facility will supply to the retail electricity customers for a given �� is 

 �������  ���������� ! 
�.        (47) 

 where ������� is the reaction function of the cogeneration facility to the electricity price, �� . 

2.4.2 Electric utility’s generation planning proble m 

The optimal generation quantity of the electric utility depends on the residual demand. From 

the inverse demand function, the total electricity demanded by the retail electricity customers 

as a function of electricity price is 
I�������  .P �J ! ���. Of the total electricity demanded, 

������� is supplied by the cogeneration facility and the residual demand is satisfied by the 

electric utility.  The residual demand for the electric utility as a function of the electricity 

price is given below 

�����   
I������� ! �������         (48) 
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The electric utility being the Stackelberg leader will determine the residual demand and 

associated electricity price that would maximize its profit.  The reaction function of the 

cogeneration facility to an electricity market price determines the residual demand function 

of the electric utility. The reaction of the cogeneration facility is discontinuous with the 

discontinuity occurring when �� 3 (. % 2()$��.  If �� 3 (. % 2()$��, the reaction of the 

cogeneration facility is a function of the electricity price. This is because ���������� is a 

function �� and by equation (47) we know that the reaction of the cogeneration facility is its 

optimal generation plan for a given electricity price.  If �� " (. % 2()$�� then the 

cogeneration facility’s reaction is to generate a fixed quantity of electricity $�� which leads 

to a fixed supply of $�� ! 
� MBtu of electricity to the retail electricity customers.  This 

leads to two cases – case (a) when ����������   @�B�C)�0   and case (b) when ����������   $�� 

Case (a): urs�tt�QR�   QRBr��r�   

When ����������   @�B�C)�0 , the electricity supplied by the cogeneration facility to the retail 

electricity customers is �������  @�B�C)�0 ! 
�. Therefore the residual demand faced by the 

electric utility is 

������   .P �J ! ��� ! �@�B�C)�0  – 
��       (49) 

From equation (49) we determine the inverse residual demand function faced by the electric 

utility as  

������   )�0\BP�)�0�<WB]^�B�C�)�01P        (50) 
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We know that the reaction of the cogeneration facility occurs when �� 3 (. % 2()$��. From 

equation (50) we have that the electricity price, Pr is a function of the generation quantity of 

the electric utility.  Therefore the condition for the change in the reaction function of the 

cogeneration facility yields the following condition on the generation quantity ��  

.P �J ! K�$�� – 
�� ! (. ! 2()$��� 3 ��       (51) 

The generation planning problem of the electric utility when the reaction of the cogeneration 

facility is  ����������   @�B�C)�0 ,   in the IPP model is the profit maximization problem (P8) 

given below, 

����� �2����  �)�0\BP�)�0�<WB]^�B�C��01P ��� ! L ! M�� ! N��)    (52) 

s.t  �� 4 .P �J ! K�$�� – 
�� ! (. ! 2()$���      (53) 

Problem P8 is a non-linear optimization problem. Solving for the optimal solution using the 

FONC since, �2���� is concave w.r.t �� (Proof in Appendix A) 

56�W�;;5<W  )�0\BP�)�0�<WB]^�B�C�)�01P ! M ! 2N�� ! )P�0)�01P ��  0     (54) 

�����B>?  )�0�\1)�0]^B[�1P��CB[�)�YP1)�Y1P��0�         (55) 

where �����B>? is the unconstrained optimal generation quantity of the electric utility in the 

IPP configuration if the reaction of the cogeneration facility is ����������   @�B�C)�0 . 

Since the constraint specified by equation (53) is a strict inequality for equation (49) to be the 

optimal solution it has to satisfy the following condition 

)�0�\1)�0]^B[�1P��CB[�)�YP1)�Y1P��0� 4 .P �J ! K�$�� – 
�� ! (. ! 2()$��    (56) 
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2NK(. % K)(. % 4(.()�N % K� ! M�K) % 2K()� ! J�2NK % 2K() % 4N()� ! 
��2NK) %
4NK(2%2K2(2%$�*2NK2%4K2(24NK(2%8(22N%K40  

The condition on the electricity demand of the thermal host that ensures that the optimal 

generation quantity in equation (53) satisfies condition (56) is 

)YP�C1P0�C1��C�0�Y1P�B[�P01)P�0�B\�)YP1)P�01�Y�0�1/�^�)YP01�P0�0�YP�01��00�Y1P���)YP01�YP�01)P0�0� 4 
�  (57) 

Case (b): urs�tt�QR�   ���  

When, ����������   $�� the electricity supplied by the cogeneration facility to the retail 

electricity customers is �������  $�� ! 
�. Therefore the residual demand faced by the 

electric utility is 

������   .P �J ! ��� ! �$�� – 
��        (58) 

From equation (58) we get the inverse residual demand function faced by the electric utility 

as 

�O����   J ! K��� % $�� ! 
��       (59) 

The generation planning problem of the electric utility when the reaction of the cogeneration 

facility is  ����������   $��,   in the IPP model is the profit maximization problem (P9) given 

below, 

 �����  �2����  �J ! K��� % $�� ! 
����� ! ������     (60)  

s.t �� # .P �J ! K�$�� – 
�� ! (. ! 2()$���     (61)
 

The generation planning problem described above is a constrined non-linear optimization 

problem. The solution to the problem is obtained using the method of active and inactive 
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constraints. If we consider the constraint (61) inactive at optimality, problem P9 becomes a 

unconstrained non-linear problem. The optimal solution to the problem can be found from its 

FONC of the unconstrained non-linear problem as 

56�W�;;5<W  J ! M ! 2N�� ! K�� ! K��� % $�� ! 
��  0     (62) 

�����B?B>?  \B[BP�/�^B]^�)�Y1P�         (63) 

where �����B?B>? is the unconstrained optimal generation quantity of the electric utility in the 

IPP configuration if the reaction of the cogeneration facility is ����������   $��.  

The constrained optimal generation quantity of the electric utility is in the IPP configuration 

if the reaction of the cogeneration facility is ����������   $�� is 

�����B?B>?  .P �J ! K�$��  – 
�� ! (. ! 2()$���      (63) 

 The optimization problem P9 is a constrained non-linear problem can be obtained 

from the KKT conditions associated with the non-linear constrained problem.  The 

Lagrangian function associated with the objective of problem P9 is 

T2����  �J ! K��� % $�� ! 
����� ! ������ % �.������ ! .P �J ! K�$��  – 
�� ! (. ! 2()$����  (64) 

5_�W�;;5<W  J ! M ! 2N�� ! K�� ! K��� % $�� ! 
�� % �1���  0    (65) 

5_�W�;;5�1���  �� ! 1K �J ! K�$�* – 
*� ! (1 ! 2(2$�*�  0     (66) 

�.��� ��� ! .P �J ! K�$��  – 
�� ! (. ! 2()$����  0 ; �.��� # 0    (67) 



www.manaraa.com

47 

 

 

If the optimal solution is constrained then �����B?  .P �J ! K�$�� – 
�� ! (. ! 2()$��� and 

�.��� # 0. From equation (65) we get 

�.���  [P1\�)Y1P�B)Y�CB)P�C1�)YP1P0�]^1/�B)YPBP0B�Y�0B�P�0��^P # 0 . Therefore the 

condition when the optimal solution is �����B?B? is 

MK % J�2N % K� ! 2N(. ! 2K(. % �2NK % K)�
� % $�!2NK ! K) ! 4N() ! 4K()��� # 0   (68) 

Since the optimal solution is binding when �.��� # 0, the optimal solution will be non-

binding when �.��� 4 0. Therefore the condition under which the optimal solution of problem 

P9 will be �����B?B>? is  

 MK % J�2N % K� ! 2N(. ! 2K(. % �2NK % K)�
� % $�!2NK ! K) ! 4N() ! 4K()��� 4 0   (69) 

2.4.3 Equilibrium solution of IPP model  

We next define the characteristics of the equilibrium solution to the Stackelberg game in the 

IPP configuration. An equilibrium solution of a game is the solution/strategy from which no 

player in the game has any incentive to deviate from. (Gibbons, 1992) 

Definition of Stackelberg Equilibrium: The equilibrium solution to the Stackelberg game in 

the IPP configuration is defined as the set of decisions, {���, ���, ����, 	���E that satisfy the 

following conditions 

• The generation quantity �� and the associated electricity price �� maximize the host 

utility’s profit given the supply of electricity to the retail electricity customers by the 

cogeneration facility for the electricity. 
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• The cogeneration output of electricity ��� and heat  	��, maximizes the qualifying 

facility’s profit for a given electricity price ��  and satisfies the electricity and heat 

demand of the thermal host. 

Similar to the CGPE model the IPPE model has three possible solutions. Based on the set of 

given parameters D$, J, K, M, N, �� , 
�, (., ()E, we get conditions which determine which of 

the solutions is the Stackelberg equilibrium. The conditions are derived based on the 

Lagrangian multiplier associated with the constraints to the generation planning problem of 

the electric utility. The IPP configuration has three possible equilibrium solutions. We 

mainly focus on two solutions, non-binding solution and binding solution with �� 4 (. %
2()$��. This is because the behavior and the quantity of electricity supplied by the 

cogeneration facility is the same in the two possible binding solutions. A summary of the 

possible equilibrium solutions to the IPP model is provided below in Table 4.  

Condition uv�tt urs�tt 

Non-Binding; CN3 4 0 

2()�J % 2()
� ! M� % K�(. ! M�2�NK % 2�N % K�()�  
�� ! (.2()  

Binding with ��  (. % 2()$�� ; CN4 # 0 

J ! K�$��  – 
�� ! (. ! 2()$��K  
$�� 

Binding with �� 4 (. % 2()$��; CN4 4 0 

J ! M % K�
� ! $��� 2�N % K�  
$�� 

Constants: ()  �/01�/12/0  ;  (.  �/1�/ ;  CN3  2�NK) % 4NK() % 2K)() % 4N()) % 4K())�$�� ! M�K) % 2K()� ! 2J�NK % 2N() %K(2!K2%2K(2+��N%(12NK%K2%4N(2%4K(2!2NK2%2NK(2%2K2(2
* ; CN4  MK % J�2N % K� ! 2N(. ! 2K(. % �2NK % K)�
� % $�!2NK ! K) ! 4N() ! 4K()��� ; 

Table 4. Equilibrium solution(s) of the IPP configuration Stackelberg game 
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The consumer surplus associated with the equilibirum solution of the Stackelberg game in 

the IPP configuration model is given below 

�����  w���� % w�
�� % w�
I���� ! �����
I���     (70) 

Similar to the CGP model, w���� and w�
�� are considered to be constant and the utility to 

the retail electricity consumers is obtained from the inverse demand function. The consumer 

surplus expression is similar to the CGP model since the cost to the thermal host of satifying 

the heat and electricity demand consumed is accounted for in the profit function of the 

cogeneration facility rather than in the consumer surplus.Therefore the consumer surplus of 

the IPP model is given below 

�����  w���� % w�
�� % P�]y�;;� 0)   with 
I���  ����� % ������ ! 
�  (71) 

The total surplus associated with the equilibirum solution of the IPP model is 

|����  ����� % �����  ����� % �2���� % ������  w���� % w�
�� % w�
I���� !
�O����������
I��� % �O����������������� ! 
�� ! �-���������� % �O��������������� ! ���������   

Therefore the total surplus in the IPP model is 

|����  w���� % w�
�� % w�
I���� ! �-���������� ! ���������     (72) 

Illustrative Numerical Example: Based on the numerical values provided in Table 3 a 

illustrative numerical example is shown below. 

Step1 : Calculate the value of the constants CN3 and CN4  to be  0.64928 qnd -2.18148 

respectively. Since CN3 3 0 and CN4 4 0 the equilibirum solution is the binding solution 

with �� 4 (. % 2()$��. The generation quantity of the electric utility that is associated with 
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this equilibirum solution is �����  \B[1P�]^B/�^� )�Y1P�  1843.483. The associated electricity 

price �����= 77.51 ($/MBtu). The profit to the electric utility is $ 9754.483. 

Step 2:  Based on the electricity price, the cogeneration facility estimates, 
@��;;B�C)�0  

204.4434. The generation level required to satisfy the heat demand of the thermal host is 

$��  340. Since the optimal generation plan for the cogeneration facility is ������  
���D@��;;B�C)�0 , $��E, the ������  340. The cogeneration facility satisfies the electricity 

demand of the thermal host and sells the remaining , 340 -50 MBtu = 290 MBtu to retail 

electricity customers at the prevailing electricity price. The associated profit to the 

cogeneration facility is $3255.517. 

 

2.5 Self-Generation with cogeneration (SCG) model 

In the SCG model, the thermal host’s heat demand and electricity demand is satisfied by the 

cogeneration facility. The cogeneration facility and the thermal host have no interaction with 

the electric utility or the retail electricity customers.  The energy generation system 

configuration is shown in Figure 4. The total cost, scg
TC , of satisfying the heat and electricity 

demand of the thermal host is 2 2
1 2( )cg d d dC S a c S c Sα α α= + + which is the cost of 

cogenerating exactly the quantity of heat and electricity required to satisfy the just the heat 

demand of the thermal host.   

 

 



www.manaraa.com

51 

 

 

 

 

 

 

 

 

 

Figure 4. Self generation with cogeneration (SCG) configuration model 

The electric utility’s generation planning problem in the SCG is given below 

( ) ( )scg
eu r u u u uMax P x x C xπ = −         (73) 

In the SCG model the inverse demand function of the retail electricity customers and the 

generation cost function of the electric utility retain the same functional form as in the CGP 

and IPP models. The optimal generation quantity of the electric utility in the SCG model is 

obtained from its FONC as 

2( )
scg
u

m
x

n

β

γ

−
=

+
         (74) 

The consumer surplus in the SCG model is given by the following expression 

( ) ( ) ( ) ( ) ( )scg scg scg
cgscg d d u r u u dCS v S v Q v x P x x C Sα= + + − −     (75) 

Similar to the CGP and IPP models we estimate ( )cg
uv x from the inverse demand function of 

the retail electricity customers and obtain the consumer surplus to be 

2( ) ( ) ( )
2

cg
cgcg d d u dCS v S v Q x C S

γ
α= + + −       (76) 

Retail electricity customers 

Cogeneration facility  

Thermal host 

Electric utility 

xu 

Qd Sd 
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The total surplus corresponding to the SCG model is the sum of the consumer surplus and the 

profit of the electric utility 

( ) ( ) ( ) ( ) ( )cg cg cg cg
cgcg cg eu d d T u u cgTS CS v S v Q v Q C x C xπ= + = + + − −    (77) 

 

2.6 Heat Production without cogeneration (HP) model  

In the HP model, the thermal host utilizes a conventional heat/steam generator to satisfy its 

heat demand and purchases electricity from the electric utility to satisfy its electricity 

demand.  The energy generation system configuration is shown in Figure 5.  

 

 

 

 

 

 

 

 

Figure 5. Heat Production without Cogeneration (HP) configuration model 

The thermal host does not gain revenue due to electricity sales but incurs the cost of 

satisfying its energy needs. The total cost, hp
TC  of satisfying the heat and electricity demand 

of the thermal host is given by 2( )hp hp
T h d r d d dC C S P Q i jS kS= + = + + .  2( )h d d dC S i jS kS= + +

is the quadratic cost function of a conventional boiler. 

Retail electricity customers 

Heat production unit 

Thermal host 

Electric utility 

xu-Qd 

Sd 

Qd 
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The electric utility’s generation planning model is the profit maximization problem P10 

given below 

( ) ( ) ( )
u

hp
eu r T T u u r T d

x
Max P Q Q C x P Q Qπ = − +  with T u dQ x Q= −    (78) 

TQ is the total electricity supply by the host utility to the retail electricity customers.  The 

inverse demand function and the generation cost function for the electric utility remains the 

same as in the CGP and IPP models. Since problem P10 is a non-linear unconstrained 

problem the optimal generation quantity for the electric utility in the HP model can be 

obtained from its FONC as 

2( )
hp d
u

m Q
x

n

β γ

γ

− +
=

+
         (79) 

The consumer surplus in the HP model is 

 ( ) ( ) ( ) ( )hp hp hp hp
hp d d T r T T TCS v S v Q v Q P Q Q C= + + − −       (80) 

Similar to the CGP model the utility in consuming hp
TQ  MBtu of electricity to the retail 

electricity customers is the area under the inverse demand function. Unlike the CGP model, 

the cost of satisfying Sd MBtu of useful heat and Qd MBtu of electricity for the service utility 

is included in the consumer surplus expression of the HP model. This is because in the HP 

model, the thermal host is only a consumer of electricity and heat and does not supply any 

energy products as in the case of the CGP model. Therefore,  

2( ) ( )
2

hp hp
hp d d T TCS v S v Q Q C

γ
= + + −         (81) 
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The total surplus is the sum of the consumer surplus and the producer surplus. In the HP 

model the producer surplus includes the profit to the electric utility and the consumer surplus 

corresponding to the consumption of the thermal host and the retail electricity customers.  

|�H�  w���� % w�
�� % w�
IH�� ! �����H�� ! �H����    (82) 

 

2.7 Economic performance of Cogeneration under PURP A w.r.t. the 

benchmarks 

In this section of the paper, we evaluate the economic performance of PURPA by comparing 

the total surplus in the CGP model with the three benchmarks – HP model, SCG model and 

IPP model.  We use total surplus as the measure of economic welfare performance since it 

accounts for the economic benefits to all the participants in the system including the retail 

electricity customers. If we only consider the profits to the electric utility and the 

cogeneration facility, the economic performance evaluation will not give a completer picture. 

Also since PURPA is a result of government intervention and the government will be more 

interested in maximizing total surplus rather than individual participant profits, the total 

surplus as a performance criteria for economic welfare is appropriate. 

2.7.1 Comparison of total surplus in CGP and IPP co nfigurations 

To explicitly understand the benefits of PURPA we need to compare the cogeneration facility 

as an Independent Power Producer (IPP) model and the Cogeneration under PURPA (CGP) 

model. Since one of the intents of PURPA is to encourage generation and sale of electricity 

from non-utility electricity producers that are more fuel efficient, PURPA stipulates that 



www.manaraa.com

55 

 

 

electric utility’s have to purchase power at a pre-determined, fixed rate, Ps. This fixed rate is 

called the PURPA buyback rate (Joskow and Jones, 1983; Rose and NcDonald, 1991). Ps is 

set by the regulating authority of the state where the host utility and qualifying facility are 

located,  on a case by case basis and is equivalent to the avoided cost of the host utility. The 

avoided cost is defined as the cost the electric utility avoids by not purchasing or generating 

the quantity of cogenerated electricity sold to it by the cogeneration facility.  The intent of 

PURPA was to provide the cogeneration facilities and other qualifying facilities a captive 

customer in the form of the electric utility.  The reason the buyback rate is the electric 

utility’s avoided cost was to make the transaction cost neutral to the electric utility and the 

wholesale/retail electricity markets (Hirsh, 1991).   

 In the IPP configuration model, the generation and sale of electricity from 

cogeneration facilities and other non-utilities is possible due to the de-regulation of the 

electricity industry. In the IPP configuration, by ensuring that local utilities provide fair 

access to transmission and distribution services to cogeneration facilities, the participation of 

non-utility generators in ensured in retail and wholesale markets (where they exist). The main 

difference between the IPP and CGP models is the price at which the cogeneration facility 

sells electricity. In the CGP model the price is set by a regulatory mechanism while in the 

IPP model the price is set by the game between the cogeneration facility and the electric 

utility. By comparing the total surplus in these two models we will be able to evaluate the 

economic performance of cogeneration under PURPA 
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The IPP model has three possible equilibrium solutions –binding solution with �����  (. %
2()$�� , binding solution with ����� 4 (. % 2()$�� and non-binding solution with ����� 3
(. % 2()$��.  

Case (a): Binding solution with QR�tt 4 r� % �r����;  

If the equilibrium solution of the IPP model is the binding solution with ����� 4 (. % 2()$�� 

then ������  $�� and �����  \B[BP�/�^B]^�)�Y1P� . From equations (40) and (77) we see that the 

total surplus expressions are very similar and they differ only the utility to the retail 

electricity customers, the cost of generation to the electric utility and the cost of cogeneration 

to the cogeneration facility.   

The utility to the retail electricity customers is a function of the total electricity supplied to 

them. In the CGP model the total electricity supplied to the retail customers is as follows, 


I���  \B[)�Y1P� % )Y�<9:9:;B]^�)�Y1P�  (Non-arbitrage mode) or 

 
I���  \B[)�Y1P� ! P]^�Y1P� % )Y�<9:9:;B]^�)�Y1P�  (Arbitrage mode)     (83) 

The total supply of electricity to the retail customers in the IPP model, when ������  $�� and 

when �����  \B[BP�/�^B]^�)�Y1P�  , is 


I���  \B[)�Y1P� % �)Y1P��/�^B]^�)�Y1P�         (84) 

 If the equilibrium solution of the CGP configuration is arbitrage mode binding 

solution then, ������  $��. From equations (83), and (84) we have that, 
I��� 3 
I��� and the 
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utility of the retail electricity customers is greater in the IPP model than the CGP model i.e. 

w�
I���� 3 w�
I����. 
The cost of generation for the electric utility is less in the CGP than in the IPP model since 

from equations (28) and (44), ����� 3 ����� thereby reducing the cost of generation in the 

CGP model.  The cost of cogeneration is the same in both the CGP and IPP models. 

Therefore the condition under which the CGP model results in greater total surplus than in 

the IPP model is  

w�
I���� ! w�
I���� 4 ��������� ! ���������     (85) 

The condition (85) can be written mathematically as 

J�
I��� ! 
I���� ! P) �
I���) ! 
I���)� 4 M������ ! ������ % N������) ! �����)�   

Simplifying the above expression (details in Appendix B) we get 

J % K
� ! M 4 �P) ! N�$��         (86) 

Since ����� 3 0, we have J % K
� ! M 3 K$��. Therefore the condition (86) will not occur. 

Hence if the equilibrium solution of the CGP model is the arbitrage-binding solution and the 

equilibrium solution of the IPP model is such that the cogeneration facility only generates 

electricity to satisfy the thermal host’s heat demand, the CGP configuration does worse in 

terms of total surplus than IPP configuration.  The results of the comparison are summarized 

in Table 4. (Details in the Appendix B ) 
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Criteria CGP IPP Condition 

Total Surplus  Higher  

Consumer Surplus   Higher  

Profit of cogeneration facility Higher  �� 3 ����� 

Profit of electric utility  Higher  

Table 5: Comparison of economic performance between the CGP and IPP 
configuration when equilibrium solution in CGP is arbitrage/binding and equilibrium 

solution in IPP is IPP binding with QR�tt 4 r� % �r����. 
 

 If the equilibrium solution of the CGP configuration is arbitrage mode non-binding 

solution then, ������  @AB�C)�0 3 $�� .  If $�� % 
� 4 )Y∆P  with ∆ @AB�C)�0 ! $�� then 
I��� 3

I���and the utility to the retail electricity customers will be greater in the CGP configuration 

than in the IPP configuration. The cost of generation for the electric utility is less in the CGP 

than in the IPP model since from equations (28) and (44), ����� 3 ����� thereby reducing the 

cost of generation in the CGP model.  Since in case of the non-binding equilibrium solution 

to the CGP model, ������  @AB�C)�0 3 $��, the cost of cogeneration will increase. This leads to 

the following condition for the total surplus in the CGP model is to be greater than the total 

surplus in the IPP model. 

w�
I���� ! w�
I���� % ��������� ! ��������� 4 �-���������� ! �-����������  (87) 

 The condition (87) states that if sum of the gain in utility to the retail electricity market 

customers in the CGP model is less and the gain to the electric utility due to reduced 

generation cost is less than the additional cost to the electric utility in generating that 
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additional electricity, then the total surplus in the CGP configuration will be greater than the 

total surplus in the IPP configuration. 

 If the equilibrium solution of the CGP configuration is non-arbitrage mode binding 

solution then, ������ and �����  \B[B)P�/�^B]^�)�Y1P� . Since 
I���and 
I��� differ only in the 

quantity of electricity that the electric utility supplies and ����� 3 �����and 
I��� 3 
I���. 

Hence the condition under which the total surplus of the CGP configuration will exceed the 

total surplus of the IPP configuration is the same as equation (82). In case of the non-

arbitrage solution the condition in equation (82) simplifies to 

�P) ! N� �$�� ! 
�� 3 J ! M        (88) 

Since ����� 3 0, we have J ! M 3 K�$�� ! 
��. Therefore the condition in equation (88) 

will never be satisfied. Hence if the equilibrium solution in the CGP model is the non-

arbitrage binding solution, the total surplus in the CGP model will be lower than the total 

surplus in the IPP configuration.  The results of the comparison are summarized in Table 5. 

Criteria CGP IPP 

Total Surplus  Higher 

Consumer Surplus   Higher 

Profit of cogeneration facility  Higher 

Profit Surplus of electric utility Higher  

Table 6: Comparison of economic performance between the CGP and IPP 
configuration when equilibrium solution in CGP is non-arbitrage/binding solution and 
the equilibrium solution in the IPP configuration is IPP binding with QR�tt 4 r� %�r����. 
 



www.manaraa.com

60 

 

 

 If the equilibrium solution of the CGP configuration is non-arbitrage mode non-

binding solution then, ������  @AB�C)�0 3 $�� .  If $�� 4 Y∆Y1P then with ∆ @AB�C)�0 ! $�� , 


I��� 3 
I���and the utility to the retail electricity customers will be greater in the CGP 

configuration than in the IPP configuration. The cost of generation for the electric utility is 

less in the CGP than in the IPP model since from equations (28) and (44), ����� 3 ����� 

thereby reducing the cost of generation in the CGP model.  Since in case of the non-binding 

equilibrium solution to the CGP model, ������  @AB�C)�0 3 $��, the cost of cogeneration will 

increase. This leads to the following condition for the total surplus in the CGP model is to be 

greater than the total surplus in the IPP model. 

w�
I���� ! w�
I���� % ��������� ! ��������� 4 �-���������� ! �-����������  (89) 

It should be noted that the above condition is the same as in the case of the arbitrage mode 

non-binding solution.  

2.7.2 Comparison of total surplus in CGP and HP con figurations 

From equations (40) and (82) we that  

|����  w���� % w�
�� % w�
I���� ! ��������� ! �-����������  

|�H�  w���� % w�
�� % w�
IH�� ! �����H�� ! �H����  

|���� and |�H� differ in the third, fourth and fifth terms only.The third and fouth terms of 

the total surplus expression are the economic utility to the retail electricity customers and the 

cost of generation to the electric utility. The fifth term in |�H� is the cost of generating Sd 

(MBtu) using a conventional boiler while in |���� it is the cost of cogenerating ������  MBtu 
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of of electricity and $������ (MBtu) of heat. In comparing the total surplus for the HP and 

CGP models we have to compare the four possible equilbirum solutions of the CGP model – 

arbitrage/binding solution, arbitrage/non-binding solution, non-arbitrage/binding solution and 

non-arbitrage/non-binding solution with the optimal solution of the HP model. The 

occurrence of one of the equilibrium is dependent on the set of parameters, 

1 2{ , , , , , , , , }d dm n c c S Qα β γ .  

The total electricity supply 
I, to the retail electricity customers is greater in the CGP model 

than in the HP model. Since the supply is greater in the CGP model the utility to the retail 

electricity customers is also greater in the CGP model. This is mathematically shown as 

follows. The total electricity supply to the retail electricity customers in the HP configuration 

is given by 


IH�  ���H� ! 
� with ���H�  \B[1P]^)�Y1P� .  

From equation (83) we can see that 


I���  \B[)�Y1P� % Y�<9:9:;B]^��Y1P�  
IH� % Y<9:9:;
�Y1P� % P]^)�Y1P� (Non-arbitrage mode) or 

 
I���  \B[)�Y1P� ! P]^�Y1P� % Y�<9:9:;B]^��Y1P�  
IH� % Y<9:9:;
�Y1P� (Arbitrage Mode)  

Since, 
I��� 3 
IH�, w�
I���� 3 �
IH��. Therefore the utility to the retail electricity customers 

is increased in the CGP model when compared to the utility to the retail electricity customers 

in the HP model. Also, from equation (38) and (80) we have that the consumer surplus of the 

CGP and HP configurations are �����  w���� % w�
�� % P�]y9:; �0)   and  ��H�  w���� %
w�
�� % P�]yV; �0)   respectively. The expressions differ only in the value of the total electricity 
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supply to the retail electricity customers. Since 
I��� 3 
IH�, ����� 3 ��H� and the consumer 

surplus is greater in the CGP configuration (for any of the four possible equilibrium 

solutions) than in the HP configuration. 

From equations (28) and (35) we have that   

�����  \B[1P]^B)P<9:9:;
)�Y1P�  ��H� ! P<9:9:;

�Y1P� (Non-Arbitrage Mode) or 

 �����  \B[1)P]^B)P<9:9:;
)�Y1P�  ��H� ! P�Y1P� ������� ! ])̂ � (Arbitrage Mode)  

Therefore, the generation quantity of the electric utility is less the CGP model than in the HP 

model. This reduces the cost of generation to the electric utility i.e. ��������� 4 �����H��.  

The cost of cogeneration is generally higher than cost of generating process heat using a 

conventional boiler (Joskow and Jones, 1983). Hence the thermal host incurs additional cost 

in energy production in the CGP model than in the HP model.  Therefore the condition under 

which the total surplus in CGP model will be greater than the total surplus in the HP model is 

given below 

w�
I���� ! w�
IH�� % �����H�� ! ��������� 4 �-���������� ! �H����  

 �(�(��
�Y1P�  mNJ % KM % YP) �
� % 3����� ! YP�Y1)P��(�(��

)�Y1P� n 3 �-����(�(��� ! �H����  (90) 

Therefore cogeneration under PUPRA (CGP) will result in higher total surplus than heat 

production (HP) without cogeneration by the thermal host, if the additional cost of 

cogeneration incurred by the qualifying facility in the CGP model is less than the gains in 

total surplus due to the increased utility to retail electricity customers and the cost reduction 

to the electric utility.  
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2.7.3 Comparison of total surplus in CGP and SCG co nfigurations 

In the HP model there was no cogeneration and hence the comparison between the HP and 

CGP models helped identify the conditions under which cogeneration is advantageous to the 

society.  But the previous comparison does not explicitly identify if cogeneration under 

PURPA is economically beneficial. One of the intents of PURPA is to promote non-utility 

electricity producers such as cogeneration facilities and small power producers (Hirsh, 1999). 

Especially those industrial and commercial cogeneration facilities that due to their very high 

heat demand and low electricity demand as modeled in this dissertation which will have 

excess electricity generated at minimal extra costs. In the SCG model the thermal host 

though attached to a cogeneration facility is not an independent power producer or qualifying 

facility. The cogeneration facility does not supply electricity to the retail electricity 

customers or to the electric utility. The SCG model helps identify the conditions under which 

cogeneration facilities being electricity suppliers is advantageous from a total surplus 

perspective.  

From equations (40) and (77) we that  

|����  w���� % w�
�� % w�
I���� ! ��������� ! �-����������  

|����  w���� % w�
�� % w������� ! ��������� ! �-���$���  

Since w���� and w�
�� will remain constant among all models we focus on economic utility 

to the retail electricity customers , the cost of generation to the electric utility and the cost of 

cogeneration to the thermal host to compare the total surplus in the CG and SCG models.  

We once again compare the four possible equilbirum solutions of the CGP model – 

Arbitrage/binding solution, Arbitrage/non-Binding solution, Non-Arbitrage/binding solution 
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and Non-Arbitrage/non-Binding solution with the optimal solution of the SCG model. The 

occurrence of one of the equilibrium is dependent on the set of parameters, 

1 2{ , , , , , , , , }d dm n c c S Qα β γ .  

The total electricity supply 
I, to the retail electricity customers in the SCG model is ������ 

since the electric utility is their sole supplier  
I���  ������  \B[)�Y1P� . 
From equation (82) we can see that 


I���  \B[)�Y1P� % Y�<9:9:;B]^��Y1P�  
I��� % Y�<9:9:;B]^��Y1P�  (Non-Arbitrage Mode) or 

 
I���  \B[)�Y1P� ! P]^�Y1P� % Y�<9:9:;B]^��Y1P�  
I��� ! P]^�Y1P� % Y�<9:9:;B]^��Y1P�  (Arbitrage Mode)  

 If the equilibrium solution in the CGP model is non-arbitrage mode, binding or non-

binding, the total electricity supply to the retail electricity customers is always greater than 

the total electricity supply in the SCG model. If the equilibrium solution in the CGP model is 

the arbitrage mode then from expressions 
I��� 3 
I���  if and only if ������ 3 )Y1P)Y 
�.  

The cost of generation to the electric utility is less in the SCG model than in the CGP model. 

This is because the electric utility’s optimal generation quantity is less in the CGP model 

than in the SCG model. From equations (26), (28) and (39) we have the following 

relationship between the electric utility’s optimal generation quantity in the CGP model and 

the electric utility’s optimal generation quantity in the SCG model 

������  ������ ! ������� ! ])̂ � PY1P  (AM) or  ������  ������ ! ������� ! 
�� PY1P (NAM) 

Since $�� 3 
� by assumption and ������ # $�� , ������ 3 
�. Therefore ������ 4 ������ and  

and ���������� 4 ����������.   
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 If the equilibrium solution in the CGP model is binding for the cogeneration facility 

(i.e. ������  $��) then the cost of cogeneration  to the cogeneration facility remains the same 

in both the SCG and CGP models. If the equilibrium solution in the CGP model is non-

binding for the cogeneration facility (i.e. ������ # $��) then the cost of cogeneration to the 

cogeneration facility is higher in the CGP configuration than in the SCG configuration.  

Therefore if the parameters, 1 2{ , , , , , , , , }d dm n c c S Qα β γ ,  are such that the CGP model’s 

equilibrium solution is non-arbitrage and binding for the cogeneration facility, the total 

surplus of the CGP model will always greater than the total surplus of the SCG model. If the 

parameter set is such that the equilibrium solution of the CGP model is arbitrage and binding 

for the cogeneration facility then the total surplus of the CGP model will be greater than the 

total surplus of the SCG model if and only if ((2 ) ) / 2cgp
cg dx n Q nγ> + .   If the parameter set is 

such that the CGP model’s equilibrium solution in non-binding (arbitrage or non-arbitrage) 

for the cogeneration facility, the total surplus of the CGP model will be greater than the total 

surplus of the SCG model under the following condition, 

w�
I���� ! w�
I���� % ��������� ! ��������� 4 �-���������� ! �-���$���   (91) 

If the cogeneration facility cogenerates more electricity than that required to satisfy the 

thermal host’s heat demand, the total surplus of the CGP configuration will be greater than 

that of the SCG configuration is that the additional cost of cogeneration incurred by the 

thermal host in the CGP model is less than the increase in economic utility to the wholesale 

electricity customers in the CGP model and the cost reduction to the electric utility in the 

CGP model.  
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CHAPTER 3. ENVIRONMENTAL BENEFITS OF COGENERATION 

UNDER PURPA 

3.1 Introduction and overview of emission control i n electricity 

generation 

In this chapter of the dissertation we study the generation planning problem and the 

associated environmental performance of a host utility and qualifying facility under a 

PURPA contract. The qualifying facility and host utility trade electricity due to the Public 

Utilities Regulatory Policies Act (PURPA) contract while the host utility is also regulated for 

its emissions of nitrogen oxides (NOx) a seasonal cap and trade program. As in chapter 2, the 

interaction of the host utility and the qualifying facility as part of the PURPA contract is cast 

as a Stackleberg game with the host utility as the leader and the qualifying facility as the 

follower. The optimal generation plan for host utility and the qualifying facility are 

determined and the total NOx emissions in the system associated with this optimal generation 

plan is calculated. The model is referred to as the Cogeneration under PURPA with emission 

control or CGPE model.  

 To evaluate the environmental performance of the CGPE model, the total NOx 

emissions CGPE model is compared with the total emissions from the three benchmark 

models introduced in chapter 2. In all three benchmarks the electric utility’s NOx emissions 

will be regulated by a seasonal cap and trade program. The configurations of the benchmarks 

remain the same as in chapter 2 with the addition of the electric utility’s NOx emissions will 

be regulated by a seasonal cap and trade program. The symbol and definitions of the decision 
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variables and parameters used in this chapter are given in Table 7.  The optimal value of the 

common decision variables in each configuration is denoted by adding a superscript to the 

variables symbol corresponding to the model name’s acronym.  For example, the optimal 

generation quantity of the host utility in the CGPE model is denoted by �����2 while the 

optimal generation quantity of the electric utility in the SCGE model is denoted by �����2 . 

Symbol Description 

Decision Variables: 

uv  Electricity generated by electric (host) utility (MBtu) 

urs Electricity cogenerated by the qualifying facility (MBtu); 

�rs Heat energy cogenerated by the qualifying facility 

�S Electricity sold by the qualifying facility to the host utility (MBtu) (In CGPE model only) 

�  Electricity purchased by the qualifying facility from the host utility (MBtu) 

QR Electricity price paid by the retail electricity customers ($/MBtu) 

Parameters: 

¡� Electricity demand of the thermal host (MBtu) 

�� Heat demand of the thermal host (MBtu) 

QS PURPA buyback price at which the qualifying facility sells electricity to the host utility as part of 

the PURPA contract ($/MBtu). 

� Power to heat ratio of the cogeneration facility (constant) 

Q¢ Price of an Nox allowance in the allowance market ($/ton) 

£v, £rs, £¤ Nox emission rate of the electric utility, cogeneration facility and het production unit respectively 

(lbs/MBtu) 

¥v Annual Nox allowance allocation for the electric utility (tons) 

Table 7. Notations in chapter 3. 
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 Emission control is a critical issue is electricity generation. It has been estimated that 

electricity generation is responsible for 62.6% of sulfur dioxide emissions, 21.2% of nitrogen 

oxides emissions and 40% of carbon dioxide emissions.  These emissions are directly linked 

to air pollution and climate change issues. Hence in the 1990’s the emissions from electricity 

generation units are regulated by many programs. The Clean Air Act was passed in 1990 and 

all electricity producers of capacity greater than 25MW are regulated for sulfur dioxide (SO2) 

emissions and nitrogen oxides (NOx) emission. The regulatory programs associated with the 

Clean Air Act was a federal cap and trade program for SO2 that was phased in over a decade 

and a mandatory NOx emission limit for coal based power plants enforced on generation 

units.  Based on the success of the national cap and trade program in 1994, a regional cap and 

trade program for both sulfur oxides (SOx) and nitrogen oxides (NOx) was implemented in 

the South Coast Area Basin. This was followed by a seasonal NOx trading program in 1999 

that was implemented in North eastern United States to combat ozone formation. Though 

carbon dioxide emissions are not yet federally regulated, regional and state based efforts to 

bring about carbon dioxide (CO2) trading programs are being implemented in Northeastern 

states and Western states of the country (Rose et al, 2006).   

 Hence since 1990, the generation of electricity is closely related to emission control 

and regulatory programs. In chapter 2 of the dissertation we evaluated the economic 

performance of PURPA. In this chapter we extend the basic model to include the emission 

regulatory program and evaluate the environmental performance of our main model – the 

CGPE model. 
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 We specifically focus on the NOx emissions. This is because the majority of 

cogeneration capacity is located in Texas, the Northeast and California totaling about 42% of 

the country’s cogeneration capacity (USCHPA, 2001). In all the above mentioned states, the 

electric utilities have their have their NOx emissions regulated by the CAIR program or the 

RECLAIM program. Being a part of the regulatory program and participating in the permits 

market will have a direct impact on their generation planning and hence their interaction with 

qualifying facilities. Therefore, it is critical to study the impact the NOx regulatory program 

has on the relationship between the host utility and the qualifying facility.  

3.1.1 Overview of NO x emission regulatory programs 

In this paper we focus on the regulation of NOx emissions. We focus on the ozone season cap 

and trade program that have been in effect in the North eastern United States since 1999. In 

1999 the Ozone Transport Commission’s NOx Budget Program (OTC) came into effect. It 

was transitioned into the larger NOx Budget Trading Program (NBP) in 2004. The NBP 

covered a larger geographic region and had more stringent rules than the OTC program. The 

year 2008 was to be the last year of the NBP program with it transitioning into the Clean Air 

Interstate Rule’s (CAIR) seasonal program was to come into effect in 2009. The CAIR ozone 

program expanded the geographic region to include mid-western states and Texas. In 

addition CAIR also included an annual NOx and SO2 programs. The NOx Budget Trading 

Program (NBP) that s the was in effect since 2004 in 19 eastern states and was to be 

transitioned into the CAIR program cease to be in effect after the ozone season of 2008.  
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 The models in this paper will be based on the seasonal CAIR ozone program for NOx 

emissions. If and when the program or some modified version is implemented the program 

will still be a cap and trade program. The NOx program is in effect from of May 1st to 

September  30th, the summer months, when ozone pollution is most prevalent.   The 

participating states allocate allowances to the affected units along with a cap on the total 

emissions in the state during the annual ozone season of May 1st to September  30th. The 

affected units should retire one allowance for each ton of NOx that they emit during the 5 

month period. The EPA will oversee a regional allowance market where the affected units 

can trade allowances. The types of units that are regulated by the CAIR program include all 

fossil –fuel burning boilers serving generators of capacity greater than or equal to 25 MW 

that generate electricity for sale. The electric utility studied in this paper is regulated by the 

Clean Air Interstate Rule (CAIR) for its NOx emissions.   

 The CAIR program provides exemption for units that qualify as cogeneration units 

which meet certain efficiency  standards and sell no more than one third of their total 

electricity generation or 219, 000 MWh whichever is greater of electricity on an annual basis. 

This exemption for qualifying facilities and small power producers has been a part of all the 

emission control regulatory programs that have been in effect since the Clean Air Act.  In our 

paper we study the scenario when the cogeneration facility is not part of any regulatory 

program. 

 However it should be noted that in September 2008, the CAIR program was taken to 

court and due to the outcome of these legal proceedings the program has been put on hold 

and the Environmental Protection Agency (EPA) requested to re-evaluate the program (EPA, 
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2008).  However, several generating utility companies have already installed emission 

monitoring devices and purchased permits in preparation for the CAIR regulatory program. It 

is believed that to prevent losses in profit and health benefits and prevent electricity 

generation costs from being increased some form of seasonal NOx program will be put into 

effect in 2009 while the EPA pursues other options. Proposals include continuation of the 

NOx Budget Trading Program (NBP) in 2009 (Mathias, 2008). Hence the models we study in 

this paper will remain appropriate. 

 

3.2 Literature Review 

The effect of the NOx trading program on the generation planning of an electric utility has 

also been previously studied. The OTC Budget program has been studied with reference to 

market power and leader follower behavior in Chen and Hobbs (2005) and Chen et al (2006). 

In both papers, the permits market was modeled as a oligopolistic market with a few major 

firms who’s permits output into the market determines the price of the permits.  They do not 

explicitly model cogeneration facilities or account for power purchases by host utilities due 

to PURPA. The environmental implications of cogeneration have been studied extensively. 

While most of the studies have focused on solution to the economic dispatch problem of 

cogeneration units with emission constraints ( Venkatesh et al, 2003; Tsay et al, 2001) a few 

have focused on the generation planning aspect of cogeneration units. In Wu and Rosen 

(1999), they develop an energy equilibrium model to identify the environmental benefits of 

cogeneration in reference to distributed generation. However the study is based on generation 

units in Canada and do not address PURPA or the impact of PURPA on the emissions from 
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the host utility. Similarly, in Rong and Lahdelma (2007), the authors consider the effect of 

CO2 emissions trading on the production plan of a cogeneration facility. Their study is a 

multi-period model that accounts from uncertainty in heat demand, electricity price and 

permit price. Once again the study was based on generation systems outside of the United 

States and does not address the impact of any regulations other than CO2 emission 

regulations on the production plan of the cogeneration facility. In this part of the thesis we 

aim to study how the presence of a PURPA contract impacts the behavior of an electric 

utility in terms of NOx emissions.  We also hope to compare the environmental performance 

of the cogeneration under PURPA model with the three benchmarks that we have developed 

in chapter 2. 

 

3.3 Modeling Assumptions  

In addition to the modeling assumptions listed in chapter 2, due the inclusion of emission 

control and participation of the electric utility in the permits market there are certain 

additional assumptions.  

A9: The electric utility is the price taker in the permits market. This assumption is justified, 

since Chen and Hobbs (2005) considered the Pennsylvania-New Jersey-Maryland (PJM) 

power market and the OTC Nox Budget Program’s permits market covering the 12 states of 

Connecticut, Delaware, Maryland, Massachusetts, New Hampshire, New Jersey, 

Pennsylvania, Vermont, New York, Rhode Island, Maine, Northern Counties of Virginia and 

District of Columbia (Overview of OTC Budget Program, 2008).  
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A10: It is also assumed that the electric utility will sell all excess permits in the permits 

market, i.e. permits are not banked for future use. This assumption is justified since in the 

NBP program, banked permits were devalued as time progressed. In effect after a period of 

time one permit will not cover one ton of pollutant. This was referred to as Progressive Flow 

Control (PFC).  

 

3.4 Cogeneration under PURPA with emission control (CGPE) 

model  

In the CGPE model the interaction between the qualifying facility and the host utility remain 

the same as in chapter 2. However, in the CGPE model, the electric utility’s Nox emissions 

are regulated as part of a cap and trade program. Hence the host utility is a participant in the 

Nox permits market. The system configuration of the CGPE model is given in Figure 6. 

 

 

 

 

 

 

 

 

Figure 6.  Cogeneration under PURPA configuration with emission control (CGPE) 

model  
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The generation planning problem of the qualifying facility, its optimal solution and its 

reaction function remain the same as in chapter 2. However, the host utility’s generation 

planning problem is modified to include its participation in the Nox regulatory program. 

3.4.1 Host utility’s generation planning problem wi th emission control 

The profit function �2����2, of the host utility consists of five terms – revenue from retail 

electricity sales, cost of generation, cost of purchasing cogenerated electricity from the 

qualifying facility as part of the PURPA contract, the revenue from selling electricity to the 

cogeneration facility at the electricity price Pr in a bilateral transaction and revenue/cost from 

selling or purchasing permits in the Nox permits market. The profit of the host utility is a 

function of the reactions of the qualifying facility.   Similar to chapter 2, the host utility has 

two possible generation planning problems to account for the two different reactions of the 

qualifying facility. 

Non-Arbitrage Mode ( Pr ≥ Ps ): In this case the reaction of the qualifying facility from 

equation (18) is substituted in the profit function  �2����2of the host utility. The profit 

maximization problem (P6) of the host utility is modified as follows, 

���§<W
 �2����2  J��� % ��� ! 
�� ! K��� % ��� ! 
��) ! ������ ! ������ ! 
�� !

�Y�+��� ! ¨��       s.t    �� " .P mJ ! �� ! K���� ! 
��n       (94)   

The problem P6 of the host utility is a non-linear problem with linear constraint.  The 

corresponding Lagrangian function is 

 T2����2  J��� % ��� ! 
�� ! K��� % ��� ! 
��) ! ������ ! ������ ! 
��  ! �Y�+��� !
¨�� ! U.���2��� ! .P mJ ! �� ! K���� ! 
���     (95) 
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Therefore the optimal �� can be determined from the first order necessary and sufficient 

conditions as follows 

FONC: 
56�W9:;�5<W  J ! 2K��� % ��� ! 
�� ! M ! 2N�� ! �Y+�  0  (96)  

�����2_>?_>©ª  \B[B@«2WB)P�<9:B]^�)�P1Y�                                      (97)    

 Equation (97) is the non-binding solution of problem P6. The optimal solution if the 

constraint is binding is �����2_?_>©ª  .P aJ ! �� ! K���� ! 
��b , when U.���2 # 0. When 

the optimal solution is binding, U.���2  )YP<9:1)@A�Y1P�B)Y\BP�[1\12W@«�BP]^)YP .This leads 

to a condition on the electricity demand Qd, of the thermal host based on which the optimal 

generation quantity of the electric utility xu, is such that Pr ≥ Ps. 

)YP<9:1)@A�Y1P�B)Y\BP�[1\12W@«�)YP 4 
�      (98) 

Therefore the optimal solution to the host utility’s generation planning problem in the Non-

Arbitrage mode is 

�����2_YZ[  c\B[B@«2WB)P�<9:B]^�)�P1Y� ,  when  
� 3 )YP<9:B)Y\B�[1\12W@«�P1)@A�Y1P�)YP.P aJ ! �� ! K���� ! 
��b, otherwise  
G   (99) 

Case (b): Arbitrage Mode (QR 4 QS) In this case the profit maximization problem (P7) of the 

host utility is modified as follows, 

��� ¬®<W �2����2  J��� % ��� ! 
�� ! K��� % ��� ! 
��) ! ������ ! ����� % 
�J !
K
���� % ��� ! 
�� ! �Y �+��� ! �̄�  s.t  �� 3 .P mJ ! �� ! K���� ! 
��n (100)    
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The problem P7 is a non-linear problem with linear constraints and the optimal xu can be 

determined by using the FONC to be 

�����2_>?_©ª  \B[B@«2WB)P<9:1P]^)�P1Y�        (101) 

Since the constraint in P7 is a strict inequality, the optimal non-binding solution in equation 

(101) should be strictly less than the upper bound specified in equation (101). The condition 

that ensures this is U.���2  )YP<9:1)@A�Y1P�B)Y\BP�[1\12W@«�BP�P1)Y�]^P # 0. Similar to the 

non-arbitrage case we can convert the condition to a limit on the electricity demand Qd of the 

thermal host. Therefore the optimal generation optimal generation quantity xu is such that Pr 

< Ps is 

�����2_Z[  \B[B@«2WB)P�<9:B]^�)�P1Y� ,  when  
� 4 )YP<9:B)Y\B�[1\12W@«�P1)@A�Y1P�P�P1)Y�   (102) 

Let CN5  )YP<9:B)Y\B�[1\12W@«�P1)@A�Y1P�)YP  and  
CN6  �)YP<9:B)Y\B�[1\12W@«�P1)�Y1P�@A�   P�P1)Y� .      (103) 

 It can be seen that CN6 > CN5.   

3.4.2 Equilibrium solution of CGPE model  

In this section we define the Stackelberg equilibrium for the game between the electric utility 

and cogeneration facility when the cogeneration facility is an Independent Power Producer. 

The equilibrium solution is one from which no player has an incentive to change from 

(Gibbons 1992). 
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Definition of Stackelberg Equilibrium: The equilibrium solution to the Stackelberg game in 

the CGP configuration is defined as the set of decisions, {���, ���, ����, 	���, ��, ��E that 

satisfy the following conditions 

• The generation quantity �� and the associated electricity price �� maximizes the host 

utility’s profit and results in the optimal compliance with the NOx regulatory program 

when she has a valid PURPA contract with a qualifying facility as part of which she 

trades electricity. 

• The cogeneration output of electricity ��� and heat  	��, electricity sold to the host 

utility � and electricity purchased from the host utility � for a given electricity price 

�� maximizes the qualifying facility’s profit and satisfies the electricity and heat 

demand of the thermal host 

Similar to the CGP model in chapter 2, the CGPE model has six possible solutions of which 

for a given set of parameters D$, J, K, M, N, ��, 
�, (., ()E we have mutually exclusive 

conditions those results in an unique equilibrium.  A summary of the equilibrium solutions to 

the CGPE model is given in Table 8. 
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Table 8: Equilibrium solution(s) of the CGP configuration Stackelberg game 

To determine the environmental performance of the CGPE configuration we compute the 

total Nox emissions.  The Nox emissions from the electric utility are straight forward to 

estimate. However for the cogeneration facility, the Nox emissions estimate should account 

for the fact that the use of the cogeneration technology displaces the emissions that will be 

generated if the thermal host’s electricity and heat demand are satisfied by separate heat and 

electricity generation. Hence we estimate the net Nox emissions from the cogeneration 

Case QRrst£ uvrst£ ursrst£ 

Non Binding Case 


� 4 CN2 �� 4 �� J ! M ! �Y+� ! 2K��� % K
�2�K % N�  
�� ! (.2()  

CN2 " 
� 4
CN1  

��  �� aJ ! �� ! K���� ! 
��bK  
�� ! (.2()  


� 3 CN1 �� 3 �� J ! M ! �Y+� ! 2K���� ! 
��2�K % N�  
�� ! (.2()  

Binding Case 


� 4 CN2 �� 4 �� J ! M ! �Y+� ! 2K��� % K
�2�K % N�  
$�� 

CN2 " 
� 4
CN1  

��  �� aJ ! �� ! K���� ! 
��bK  
$�� 


� 3 CN1 �� 3 �� J ! M ! �Y+� ! 2K���� ! 
��2�K % N�  
$�� 

Constants CN1  )YP<9:B)Y\B�[1\12W@«�P1)@A�Y1P�)YP  ; CN2  �)YP<9:B)Y\B�[1\12W@«�P1)�Y1P�@A�   P�P1)Y�  ;  

()  �/01�/12/0  ;  (.  �/1�/ ; 
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facility. This calculation is based on the CHP emission calculator developed by the EPA 

(EPA, 2008). 

Therefore the net emissions is calculated as follows 

Net Emissions = Cogeneration facility emissions – Displaced Thermal- Displaced Electricity 

Hence the net emissions from the cogeneration facility in the CGPE configuration  

¯°���2  +��������2 ! +�
� ! +H��        (104) 

It should be noted though that if at the equilibrium solution the qualifying facility operates in 

the Arbitrage mode then the emissions displaced due to the generation of thermal host’s 

electricity demand should not be included in the calculation of the net emissions from the 

qualifying facility. This is because even though the qualifying facility generates the quantity 

(thermal host’s electricity demand), it sells the quantity to the host utility and purchases the 

same quantity from the host utility. 

Therefore, the total Nox emissions in the CGPE configuration is utility and the cogeneration 

facility 

|°���2  +������2 % ¯°���2  +������2 % +��������2 ! +�
� ! +H��  (Non-Arbitrage)  

or  |°���2  +������2 % ¯°���2  +������2 % +��������2 ! +H��  (Arbitrage)      (105)  

where �����2 and ������2 are the electricity generated by the electric utility and cogenerated by 

the cogeneration facility at equilibrium.   
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3.5 Cogeneration facility as an Independent Power P roducer with 

emission control (IPPE) model 

In the IPPE model too the cogeneration facility’s generation planning problem, solution and 

reaction to the electric utility’s decisions remain the same as in the case of chapter 2. The 

electric utility’s generation planning problem and the equilibrium solution of the Stackelberg 

game in the IPPE model are presented below.  The configuration of the IPPE model is shown 

in Figure 7. 

 

 

 

 

 

 

 

 

 

Figure 7.  Cogeneration facility as an Independent Power Producer configuration with 

emission control (IPPE) model 
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3.5.1 Electric utility’s generation planning proble m with emission control 

Therefore, the residual demand, ������  
I���� ! �������  is the generation quantity of the 

electric utility. The electric utility being the Stackelberg leader is able to choose the 

electricity price that maximizes its profit. The reaction function of the cogeneration facility 

determines the residual demand function of the electric utility. The reaction function however 

is discontinuous with the discontinuity occurring when �� " (. % 2()$�� . If �� 3 (. %
2()$��, the reaction of the cogeneration facility is a function of the electricity price. If 

�� " (. % 2()$��, the cogeneration facility’s reaction is to supply fixed quantity of 

electricity, $�� ! 
� to the retail electricity customers. This leads to two cases – case (a) 

when ������2  $��   and case (b) when ������2  @�B�C)�0 3 $��    

Case (a) ������2����  $�� 

Similar to chapter 2 we obtain the residual demand faced by the electricity based on the 

reaction of the cogeneration facility. The generation planning problem of the electric utility 

when ������2����  $��, is the profit maximization problem (P13) given below, 

�����  �2����  �������� ! ������ ! �Y�+��� ! ¨��             

s.t �� # 1 K⁄ �J ! K�$�� ! 
�� ! (. ! 2()$���       (106) 

where  ������  J ! K��� % �� ! 
�� is the residual inverse demand function faced by the 

electric utility and  ������  L % M�� % N��) is the cost of generation to the electric utility. 

Problem P13 is a non-linear constrained optimization problem. The optimal generation 

quantity for the electric utility can be obtained using the concept of active and inactive 
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constraints. The optimal unconstrained solution to problem P13 is obtained from the FONC 

of P13. 

 FONC: 

5 6�W�;;5<W  !M ! 2N�� ! )P�0<WP1)�0 % )\�0BP�B�C1)�0�B]^1<W��P1)�0  0  

Therefore,  

�����2B?B>?  \B[B@«2WB)P�/�^B]^�)�Y1P�         (107) 

where �����2B?B>?is the unconstrained optimal solution of the optimization problem P13. 

The constrained solution to P13 is �����2B?B?  \BP�/�^B]^�B�CB)�0/�^P . The condition under 

which the optimal solution will be the constrained solution or the unconstrained solution can 

be obtained using the KKT conditions associated with problem P13. The Lagrangian function 

associated with P13 is 

 T2����  �������� ! ������ ! �Y�+��� ! ¨�� % �.���2��� ! .P �J ! K�$�� ! 
�� ! (. ! 2()$����  (108) 

5 _�W�;;5<W  !M ! 2N�� ! )P�0<WP1)�0 % )\�0BP�B�C1)�0�B]^1<W��P1)�0 % �.���2  0   (109) 

5 6�W�;;5<W  �� ! .P �J ! K�$�� ! 
�� ! (. ! 2()$���  0     (110) 

�.���2 ��� ! .P �J ! K�$�� ! 
�� ! (. ! 2()$����  0; �.���2 # 0  (111) 

 From equation (111) we have that �����2B?B?  \BP�/�^B]^�B�CB)�0/�^P  when �.���2 # 0. We 

determine �.���2 by substituting �����2B?B? in equation (109) and solving for �.���2. 
MK % J�2N % K� ! 2�N % K�(. % K+��Y % �2NK % K)�
� ! �2NK % K) % 4�N % K�()�$�� # 0    (112) 
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Since the optimal solution to P13 is �����2B?B? if �.���2 # 0,  the optimal solution to P13 will 

be �����2B?B>?, if �.���2 4 0. 

MK % J�2N % K� ! 2�N % K�(. % K+��Y % �2NK % K)�
� ! �2NK % K) % 4�N % K�()�$�� 4 0    (113) 

Let 

 CN7  MK % J�2N % K� ! 2�N % K�(1 % K+��N % �2NK % K2�
* ! �2NK % K2 % 4�N % K�(2�$�* (114) 

Case (b): ����������   @�B�C)�0   

When ����������   @�B�C)�0  is the reaction of the cogeneration facility we obtain the residual 

inverse demand of the electric utility as 

������   )�0\BP�)�0�<WB]^�B�C�)�01P         (115) 

The generation planning problem of the electric utility when ����������   @�B�C)�0  is the profit 

maximization (P14) problem given below, 

����� �2����  �)�0\BP�)�0�<WB]^�B�C�)�01P ��� ! L ! M�� ! N��) ! �Y�+��� ! ¨��     

 s.t �� 4 1 K⁄ �J ! K�$�� ! 
�� ! (. ! 2()$���       (116) 

The optimal generation quantity of the electric utility in this situation is 

�����2_>?  )�0�\1P]^B[B@«2W�1P��CB[B@«2W��)�YP1)�Y1P��0�       (117) 

where �����2_>?is the unconstrained solution of the optimization problem P14. The condition 

under which the �����2_>? will be a feasible solution to P14 is 

)�0�\1P]^B[B@«2W�1P��CB[B@«2W��)�YP1)�Y1P��0� 4 1 K⁄ �J ! K�$�� ! 
�� ! (. ! 2()$���  
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i.e. 2�NK) % 4NK() % 2K)() % 4N()) % 4K())�$�� ! M�K) % 2K()� ! 2J�NK % 2N() % K()�!�K) %
2K(2+��N%(12NK%K2%4N(2%4K(2!2NK2%2NK(2%2K2(2
*40    (118) 

Let  

CN8  2�NK) % 4NK() % 2K)() % 4N()) % 4K())�$�� ! M�K) % 2K()� ! 2J�NK % 2N() % K()�!�K) %
2K(2+��N%(12NK%K2%4N(2%4K(2!2NK2%2NK(2%2K2(2
*    (119) 

 3.5.2 Equilibrium solution of IPPE model  

A summary of the equilibrium solutions of the IPPE model is provided below in Table 9. 

Condition uv�tt urs�tt 

Non-Binding; CN8 4 0 

2()�J % K
� ! M ! �Y+�� % K�(. ! M ! �Y+���2�NK % 2�N % K�()�  
�� ! (.2()  

Binding with ��  (. % 2()$�� 

; CN7 # 0 

J ! M!�Y+� ! 2K�$�� ! 
��2�N % K�  $�� 

Binding with �� 4 (. % 2()$��; CN7 4 0 

�J ! K�$�� ! 
�� ! (. ! 2()$���K  $�� 

Constants: ()  �/01�/12/0  ;  (.  �/1�/ ; 

CN7  MK % J�2N % K� ! 2�N % K�(. % K+��Y % �2NK % K)�
� ! �2NK % K) % 4�N % K�()�$��;  
CN8  2�NK) % 4NK() % 2K)() % 4N()) % 4K())�$�� ! M�K) % 2K()� ! 2J�NK % 2N() % K()�!�K) %
2K(2+��N%(12NK%K2%4N(2%4K(2!2NK2%2NK(2%2K2(2
*;  
 

Table 9. Equilibirum solution(s) of the  IPPE  configuration Stackleberg game  

Hence the net emissions from the cogeneration facility in the CGPE configuration  

¯°���2  +��������2 ! +�
� ! +H��         
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Therefore, the total Nox emissions in the IPPE configuration is utility and the cogeneration 

facility 

|°���2  +������2 % ¯°���2  +������2 % +��������2 ! +�
� ! +H��   (120)  

where �����2 and ������2 are the electricity generated by the electric utility and cogenerated by 

the cogeneration facility at equilibrium.  

 

3.6 Heat production without cogeneration with emiss ion control 

(HPE) model  

In the HPE model has the same energy generation system configuration as the HP model. 

The HPE model differs from the HP model in the electric utility’s participation in the Nox  

market and its Nox emissions being regulated. The energy generation system configuration is 

shown in Figure 8. 

 

 

 

 

 

 

 

Figure 8. Heat production without cogeneration configuration with emission control 

(HPE) model  
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The total cost, �IH�2 of satisfying the heat and electricity demand of the thermal host remains 

the same as in chapter 2, 

�IH�  �H���� % ��
�  � % ³�� % ´��) % ��
�.     (121)  

where  �H����  � % ³�� % ´��) is the cost of generating heat �� by a heat production unit 

and  �� is electricity price at which the electric utility sells electricity to the thermal host in an 

independent transaction . The electric utility’s generation planning problem is the profit 

maximization problem given below 

�����  �2�H�2  ���
IH�2�
IH�2 ! ������ % ���
IH�2�
�� ! �Y�+��� ! ¨��         (122)  

with 
IH�2  �� ! 
�, the electricity supplied by the electric utility to the retail electricity 

customers and ���
IH��  J ! K�
IH�2� the inverse demand function of the electric utility. 

�����  L % M�� % N��) is the electricity generation cost to the electric utility. The profit 

maximization problem is a non-linear problem and the optimal generation quantity can be 

obtained from the first order necessary conditions as follows  

FONC:   56�WV;�5<W  J ! 2K�� ! M ! 2N�� % K
� ! �Y+�  0    (123) 

��H�2  \B[B@«2W1P]^)�Y1P�          (124) 

Since there is no cogeneration facility in this configuration the total Nox emissions in the 

HPE model is the emissions of the electric utility and the emissions form the boiler.  

|°H�2  +���H�2 % +H��         (125) 

where ��H�2 is the electricity generated by the electric utility and �� is the useful heat 

generated by the heat production unit.  
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3.7 Self-Generation with cogeneration and emission control (SGCE) 

model 

In the SCGE model, the thermal host’s heat demand and electricity demand is satisfied by a 

cogeneration facility that does not have interact with the electric utility or the retail electricity 

customers. The energy generation system configuration for the SGCE is shown in Figure 9.  

 

 

 

 

 

 

 

 

Figure 9. Self generation with cogeneration and emission control (SCGE) model 

The total cost, �I���2 of satisfying the heat and electricity demand of the thermal host is given 

below 

�I���2  �-���$���  � % (.$�� % ()$)��).      (126) 

 �-���$���= Cost of cogenerating $�� of electricity and �� of heat. 

The electric utility’s generation planning problem is given below 

�����   �2����2  �������� ! ����� ! �Y�+��� ! ¨��           (127)  
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where ������  J ! K��is the inverse demand function of the electric utility and ������  
L % M�� % N��) is the electricity generation cost to the electric utility. The optimal 

generation quantity for the electric utility is determined from the FONC as    

�����2  \B[B@«2W)�Y1P�           (128) 

The net emissions from the cogeneration facility in the SCG model is  

¯°���2  +��$�� ! +�
� ! +H��        (129) 

Therefore, the total Nox emissions in the CGPE configuration is utility and the cogeneration 

facility 

|°���2  +������2 % ¯°���2  +������2 % +��$�� ! +�
� ! +H��    (130) 

where �����2  is  the electricity generated by the electric utility  

 

3.8 Environmental performance of cogeneration under  PURPA 

w.r.t. the benchmarks 

In this section of the paper compare the environmental performance of the cogeneration 

under PURPA configuration with the three benchmark configurations. Though environmental 

performance can be measured in many ways, we focus on the total NOx emissions associated 

with optimal generation plan in each configuration results in.  

 The total NOx emissions in the configurations studied in the paper is the sum of the 

emissions from the electric utility due to electricity generation and the net emissions from the 

cogeneration facility. The accounting of emissions from a cogeneration facility is not as 

straight forward as the calculation of emissions from an electric utility. This is due to the 
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generation of two useful energy products due to the cogeneration technology.  The EPA’s 

Combined Heat and Power Production (CHP) partnership program have developed a simple 

CHP emissions calculator. CHP is another name for cogeneration. In the paper we use the 

formula used in the EPA’s CHP emissions calculator to account for the emissions from the 

cogeneration facility. 

3.8.1 Comparison of IPPE model and CGPE model 

In the comparison between the IPPE configuration model and the CGPE configuration 

model. 

Case (a) Binding solution with QR�tt 4 r� % �r���� 

The total NOx emissions in the system in the IPPE model is  

|°���2  +� J!M!�N+�!K/�^%K
*2�K%N� % +��$�� ! +�
� ! +H��     (131) 

If the equilibrium solution of the CGPE model is the arbitrage-binding solution, the total NOx 

emissions generated in the system is  

|°���2  +� J!M!�N+�!2K/�^%K
*2�K%N� % +��$�� ! +H��      (132) 

In equation (132) we do not consider the displaced emissions associated with the generation 

of the electricity demand of the thermal host by the electric utility. This is because, in the 

arbitrage solution (both binding and non-binding) of the CGPE model, the qualifying facility 

sells all its cogenerated electricity to the host utility and purchases electricity from the host 

utility to satisfy the thermal host’s electricity demand. By comparing the total NOx emissions 

expression in equations (131) and (132) we see that the only difference between the total 

NOx emissions is the based on the generation quantity of the host utility and the displaced 
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emissions due to the electricity demand of the thermal host being satisfied by the 

cogeneration facility.  

+� J!M!�N+�!2K/�^%K
*2�K%N� 4 +� J!M!�N+�!K/�^%K
*2�K%N� ! +�
�  

Based on the above inequality we identify the condition under which the emissions from the 

CGPE model will be lower than the emissions from the IPPE model to be 

|°���2 4 |°���2 if and only if $�� 3 2�K%N�K  
�     (133) 

If the equilibrium solution of the CGPE model is the non-arbitrage-binding solution,  

|°���2  +� J!M!�N+�!2K/�^%2K
*2�K%N� % +��$�� ! +�
� ! +H��     (134) 

Since the net emissions from the cogeneration facility are the same in both the CGPE model 

and the IPPE model, the difference in the total NOx emission in the system is based on the 

NOx emissions due to electricity generation by the electric utility.   

�����2  J!M!�N+�!2K/�^%2K
*2�K%N�  �����2 ! K�/�^!
*�2�K%N�   

Therefore,  �����2 4 �����2 and the NOx emissions due to electricity generation by the electric 

utility is less in the CGPE model than in the IPPE model. Hence if the equilibrium solution of 

the CGPE model is the non-arbitrage binding solution and the equilibrium solution of the 

IPPE model is the binding solution 2 then the total NOx emission in the system will always 

be less in the CGPE model than in the IPPE model.  

If the equilibrium solution of the CGPE model is arbitrage-non-binding solution, the total 

NOx emissions generated in the system is 

|°���2  +� J!M!�N+�%K
*!2K��¶!(12(2 �
2�K%N� % +�� �¶!(12(2 ! +H��      (135) 
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In the arbitrage binding solution of the CGPE model, the NOx emissions from the qualifying 

facility increases due to increased electricity generation for sale to the host utility as part of 

the PURPA contract.  In addition the net emissions from the qualifying facility will also 

increase since at equilibrium the qualifying facility is purchasing electricity from the host 

utility to satisfy the thermal host’s electricity demand. Due to increased sale of electricity by 

the qualifying facility, the host utility will reduce its own generation quantity. Hence the 

condition under which the total NOx emissions in the CGPE model will be less than the IPPE 

model is 

+����¶!(12(2 ! $��� 4 2W2�K%N� �2K ��¶!(12(2 � ! K$�� ! 2�N % K�
��     (136) 

with  @AB�C)�0 ! ∆ $�*.  ∆ is the additional electricity generated by the qualifying facility 

because it has a PURPA contract and can sell electricity to the host utility. If the host utility 

and qualifying facility utilize the same fuel and have the same combustion efficiency their 

NOx emission rates will also be the same. Under such a condition where the host utility and 

qualifying facility emit NOx emissions at the same rate from condition (136) we have the 

total NOx emissions in the CGPE model with non-arbitrage non-binding equilibrium solution 

mostly be greater than the total NOx emissions in the IPPE model.  

Based on the condition (136) we can determine a upper bound for the emission rate of the 

qualifying facility which will ensure that that total NOx emissions in the CGPE model with 

non-arbitrage non-binding equilibrium solution is less than the total NOx emissions in the 

IPPE model with binding solution with ����� 4 (. % 2()$��. This upper bound or limit on 

the emission rate is 
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+�� 4 2W�2K∆%K/�^!2�N%K�]^� 2∆�K%N�          (137) 

If the equilibrium solution of the CGPE model is non-arbitrage-non-binding solution, the 

total NOx emissions generated in the system is 

|°���2  +� J!M!�N+�%K
*!2K��¶!(12(2 �
2�K%N� % +�� �¶!(12(2 ! +�
� ! +H��     (138) 

In the non-arbitrage binding solution of the CGPE model, the NOx emissions from the 

qualifying facility increases due to increased electricity generation for sale to the host utility 

as part of the PURPA contract.  However due to increased sale of electricity by the 

qualifying facility, the host utility will reduce its own generation quantity. Hence the 

condition under which the total NOx emissions in the CGPE model will be less than the IPPE 

model is 

+� 2K�/�^1∆�!K
*2�K%N� ! +���∆� 3 +� K/�^2�K%N�        (139) 

with  @AB�C)�0 ! ∆ $�*.  ∆ is the additional electricity generated by the qualifying facility 

because it has a PURPA contract and can sell electricity to the host utility. If the host utility 

and qualifying facility utilize the same fuel and have the same combustion efficiency their 

NOx emission rates will also be the same. Under such a condition where the host utility and 

qualifying facility emit NOx emissions at the same rate from condition (139) we have the 

total NOx emissions in the CGPE model with non-arbitrage non-binding equilibrium solution 

will always be greater than the total NOx emissions in the IPPE model.  

Based on the condition (139) we can determine a upper bound for the emission rate of the 

qualifying facility which will ensure that that total NOx emissions in the CGPE model with 

non-arbitrage non-binding equilibrium solution is less than the total NOx emissions in the 
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IPPE model with binding solution with ����� 4 (. % 2()$��. This upper bound or limit on 

the emission rate is 

+�� 4 K2W�/�^!
*12∆� 2∆�K%N�           (140) 

A summary of the environmental performance comparison between the CGPE and IPPE 

model when the equilibirum solution of the IPPE model is the binding solution with ����� 4
(. % 2()$�� is shown in Table 10 

CGPE equilibrium solution Total NOx comparison with HPE 

model if emission rate of 

qualifying facility and host utility 

are the same 

Conditions on emission rate of 

the qualifying/cogeneration 

facility (£rs� for lower 

emission in the CGPE model 

Arbitrage/Binding Lower if $�� 3 )�P1Y�P  
� N/A 

Arbitrage/Non-binding Higher +�� 4 2W�)P∆1P/�^B)�Y1P�]^� )∆�P1Y�   

Non-arbitrage/Binding Lower N/A 

Non-arbitrage/Non-binding Higher +�� 4 K+��$�� ! 
� % 2∆� 2∆�K % N�  

Table 10: Comparison of environmental performance between the CGPE model and 

IPPE model when the equilibrium solution in the IPPE model is binding. 

Case (b) Non-Binding solution with QR�tt 3 r� % �r���� 

The total NOx emissions in the IPPE model if the equilibrium solution is non-binding with 

����� 3 (. % 2()$�� is 

|°���2  +� )�0�\1P]^B[B@«2W�1P��CB[B@«2W��)�YP1)�Y1P��0� % +�� �·!(12(2 ! +�
� ! +H��   (141) 

Based on the conditions for the equilibrium solution of the IPPE model it can be seen that the 

parameter values that result in non-binding solution for the IPPE will result only in non-
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arbitrage equilibrium solutions in the CGPE model. Hence we only compare the 

environmental performance of the non-arbitrage mode equilibrium solutions of the CGPE are 

compared with the non-binding solution of the IPPE model.  If the equilibrium solution to the 

CGPE model is non-arbitrage non-binding then the total emissions from the CGPE model 

will be less than the total emissions from the IPPE model with non-binding equilibrium 

solution if the following condition is satisfied 

+�� 4 +� P��C�YP1�Y1P��0�BYP@A1)�Y1P��00]^1�0�Y\1[P1P2W@«B)�Y1P�@A1)YP]^��)�Y1P��0�YP1)�Y1P��0���·!�¶�   (142) 

If the equilibrium solution is non-arbitrage binding solution, then the net emissions from the 

qualifying facility will be less in the CGPE model than in the IPPE model. This is because 

since at equilibrium ����� 3 (. % 2()$��, the cogenerated electricity is greater in the IPPE 

model. However the emissions from the electric utility will increase in the CGPE model 

since it generates more electricity than in the IPPE model. Hence the total NOx emissions 

will be less if the following condition is satisfied 

+� �P�Y1P��CBP�Y\1[P1P2W@«1)�YP1�Y1P��0�]^B)/�YP1)�Y1P��0��^�)�YP1)�Y1P��0� 4 +����·!(12(2 ! $��� (143) 

3.8.2 Comparison of HPE model and CGPE model 

The total Nox emissions in the system for the optimal solution in the HPE model is  

|°H�2  +� J!M!�N+�%K
*2�K%N� % +H��        (144) 

The total Nox emissions associated with the binding equilibrium solutions in the CGPE 

model is 

|°���2  +� J!M!�N+�!2K/�^%K
*2�K%N� % +��$�� ! +�
� ! +H��  (Arbitrage mode) or 
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|°���2  +� J!M!�N+�!2K/�^%2K
*2�K%N� % +��$�� ! +�
� ! +H�� (Non-arbitrage mode) (145) 

From (144) and (145) we have that the total electricity generation from the electric utility is 

lower in the CGPE model. Hence if the net emissions from the qualifying facility are less 

than the emissions from the heat production unit then |°���2 4 |°H�2. 

If the equilibrium solutions of the CGPE model is binding (both arbitrage and non-arbitrage) 

then the condition on the emission rate of the qualifying facility that ensures that the total 

NOx  emissions is lower is  

+��$ 4 2+H           (146) 

If the equilibrium solution of the CGPE model is the non -binding solutions, the associated 

total Nox emissions is 

|°���2  +� J!M!�N+�!2K��¶!(12(2 �%K
*2�K%N� % +�� �¶!(12(2 ! +�
� ! +H��  (Arbitrage mode) or 

|°���2  +� J!M!�N+�!2K��¶!(12(2 �%2K
*2�K%N� % +�� �¶!(12(2 ! +�
� ! +H�� (Non-arbitrage mode) (76) 

Once again from (144) and (146) we have that the total electricity generation from the 

electric utility is still lower in the CGPE model than in the HPE model. Hence if the net 

emissions from the qualifying facility are less than the emissions from the heat production 

unit then |°���2 4 |°H�2. The condition on the emission rate of the qualifying facility that 

ensures that the total NOx  emissions is lower in the CGPE model is 

+�� 4 )2V�^/�^1∆           (147) 
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3.8.3 Comparison of SCGE model and CGPE model 

The total Nox emissions in the system for the optimal solution in the SCGE model is  

|°���2  +� J!M!�N+�2�K%N� % +��$�� ! +�
� ! +H��      (148) 

The total Nox emissions associated with the binding equilibrium solutions in the CGPE 

model is 

|°���2  +� J!M!�N+�!2K/�^%K
*2�K%N� % +��$�� ! +�
� ! +H��  (Arbitrage mode) or 

|°���2  +� J!M!�N+�!2K/�^%2K
*2�K%N� % +��$�� ! +�
� ! +H�� (Non-arbitrage mode) (149) 

From equations (148) and (149) we see that |°���2 4 |°���2 . Therefore the CGPE model 

has greater environmental performance than that of the SCGE model if the equilibrium 

solution of the CGPE model is binding in the heat constraint of the qualifying facility. 

If the equilibrium solution of If the CGPE model is the non-binding solution, the associated 

total Nox emissions is 

|°���2  +� J!M!�N+�!2K��¶!(12(2 �%K
*2�K%N� % +�� �¶!(12(2 ! +�
� ! +H��  (Arbitrage mode) or 

|°���2  +� J!M!�N+�!2K��¶!(12(2 �%2K
*2�K%N� % +�� �¶!(12(2 ! +�
� ! +H�� (Non-arbitrage mode) (150) 

The condition under which the total emissions from the CGPE model will be less than the 

SCGE model is 

+�� 4 +� K�/�^1∆!
*�2∆�K%N�           (151) 
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CHAPTER 4. CONCLUSIONS AND FUTURE RESEARCH 

4.1 Conclusions 

In this thesis we have developed increasing complex models of various configurations of a 

energy system that consisted of different electric utility- cogeneration facility relationships. 

We formulated mathematical models and determined the optimal generation plan for the 

electric utility and the cogeneration facility under the varying scenarios. We compared the 

total surplus and total Nox emissions of the cogeneration under PURPA configuration with 

three benchmarks. Specifically, we compared it with the scenario where the cogeneration 

facility sells electricity directly to retail electricity customers to determine the relative 

performance of cogeneration under PURPA with a configuration that is most likely in terms 

of structure.   

 We found that if in the cogeneration under PURPA configuration the total surplus 

realized is less than the total surplus realized when the cogeneration facility acts as an 

Independent Power Producer. Contrary to the claims of the utilities we found that it was the 

electric utilities that benefited the most under such a situation.  The electric utilities received 

higher profits in the above described scenario since they were able to purchase electricity 

from the qualifying facility and sell it to the retail electricity customers at a higher rate.  

 If the qualifying facility only generated the quantity of electricity required to 

cogenerate the heat demand of the thermal host  but sold all the cogenerated electricity to the 

host utility and purchased from the host utility the electricity required to satisfy the thermal 

host’s electricity demand, then the total surplus level in the cogeneration under PURPA 

configuration  is lower the total surplus level in the configuration where cogeneration facility 
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as an Independent Power Producer configuration. This is due to the qualifying facility 

engaging in arbitrage by selling electricity to the host utility at a higher price and purchasing 

from the host utility at a lower price. 

 One of the main intents of PURPA was to encourage the cogeneration facilities to sell 

their surplus electricity which in the absence of PURPA would have been wasted. Due to our 

comparison of the cogeneration under PURPA configuration with the self-generation with 

cogeneration configuration we were able to analytically show that sale of the surplus 

electricity does increase total surplus.  By surplus electricity we mean the electricity that is 

left after the satisfaction of the thermal host’s electricity demand from the quantity of 

electricity generated to cogenerate the heat demand of the thermal host.  This validates one of 

the success of PURPA with reference to one of its intents which was to induce cogeneration 

facilities to sell their surplus electricity.  Also in the scenario where the cogeneration option 

is not available to the thermal host and it utilized a heat production unit to satisfy its heat 

demand and purchased electricity from the electric utility, the total surplus was lower than in 

the cogeneration under PURPA configuration. 

  In terms of total Nox emissions the cogeneration under PURPA proved to have lower 

total Nox emissions in the system than the IPP configuration when in both configurations the 

cogeneration facility generated the quantity of electricity required to cogenerate the heat 

demand of the thermal host. This was due to the electric utility reducing its generation 

quantity to maintain electricity prices close to the monopoly price and also to reduce its cost 

of compliance with the Nox regulatory program. In comparison with the other two 

benchmarks we found that the cogeneration under PURPA configuration had greater NOx 
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emissions when compared to the configuration where the thermal host is self-generation with 

cogeneration without interacting with the retail customers or the electric utility.  However, 

the cogeneration under PURPA resulted in a higher amount of Nox emissions if due to high 

PURPA buyback price the qualifying facility generated more electricity. We also identified 

conditions on the emission rate of the cogeneration facility under which the total Nox 

emissions in the cogeneration under PURPA configuration will be less than the total Nox 

emissions in the benchmark models. 

 

4.2 Discussion 

The models analyzed in Chapter 2 and 3 provide us with insights into the limitations and 

advantages of cogeneration under PURPA.  It helped us identify conditions on the PURPA 

buyback price, the electricity demand of the thermal host and the heat demand of the thermal 

host based on which the justification for PURPA varied. The main limitations of the study 

are discussed below.  

 The electricity and heat output’s are fixed at a rigid ratio. This proves helpful in 

simplifying the initial qualifying facility model but it over estimates the cost of cogeneration. 

This limitation can be overcome by removing the constraint and replacing it with a fuel cost 

based production function as in Fox-Penner (1990).  

 The thermal demand is satisfied by cogeneration alone. This again limits the 

flexibility of the model and creates a situation where the qualifying facility might behave sub 

optimally. This limitation can be overcome by including a ancillary boiler in the model. 
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 The environmental performance of a configuration can be measured in terms of two 

indicators – the total Nox emissions in the system and the total usable energy generated in the 

system.Estimating only the Nox emissions will not completely estimate the environmental 

performance of a configuration, since a system configuration might have lower emissions 

due to lower energy generation. The best environmental performance of a energy generation 

system configuration is one which results in high useful energy generation with low 

emissions.  The second preferable configuration in terms of environmental performance is 

the system than results in lower emissions and lower useful energy. The least preferable 

configuration is the one that results in high emissions but low useful energy. An emphasis is 

placed on useful or usable energy products in the system. If generated useful heat or 

electricity is not utilized then it should not be considered into the calculations and should be 

treated as waste. 

 

4.3 Future Research 

The problem studied in this paper can be futher explored by considering the effect of 

transmission constraints and capacity constraints.  Specifically, transmission constraints are a 

critical to understand the arbitrage that the qualifying facility engages in in the cogeneration 

under PURPA configuration. Will the qualifying facility still sell all its cogenerated 

electricity to the host utility and purchase the electricity demand for the thermal host if 

transmission costs and constraints are considered is a question that should be explored. 

Also we do not consider the scenario where the thermal host might have more electricity 

demand than heat demand. Even though most of the qualifying cogeneration facilities that 
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exist in the United States are of the type to have higher heat demand than electricity demand, 

the vice-versa situation might high light more insights into PURPA’s workings. However, it 

should be noted that Joskow and Jones (1983) claim that cogeneration facilities that are 

dedicated to serve the heat load have more economic benefits due to PURPA than the 

facilities’ with more electricity demand. Other extensions might include introducing 

stochastic elements into the generation planning models  
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APPENDIX A. CONCAVITY OF PROFIT FUNCTIONS 

Proof of concavity of ¸�¹rst w.r.t urs  

56789:;
5<9:  �� ! ' ! 2(��� ! �/ ! 2 2/0 ��� ! 2 �/ ���    (B.1) 

506VW9:;
5<9:0  !2�( % �/ % 2/0�        (B.2) 

Since, (, ,, + and $ are all positive parameters, we have from equation (C.2), that the second 

order derivative, 
506789:;
5<9:0 4 0, º feasible ���. Hence, ������  is concave w.r.t ���.   

Proof of concavity of ¸¤vrst w.r.t uv in Non-Arbitrage Mode 

56VW9:;
5<W  J ! 2K��� % ��� ! 
�� ! M ! 2N��    (B.3) 

506VW¿À5<W0  !2K ! 2N  !2�K % N�       (B.4) 

Since, K & N, are both positive, we have from equation (B.4), that the second order derivative 

, 
50678¿À5<W0 4 0, º feasible ��. Hence, �H����  is concave w.r.t ��.   

Proof of concavity of ¸¤vQÂ w.r.t uv in Arbitrage Mode 

56VW9:;
5<W  J ! 2K��� % ��� ! 
�� ! M ! 2N�� ! K
�  (B.5) 

506VW9:;
5<W0  !2K ! 2N  !2�K % N�       (B.6) 

Since, K & N, are both positive, we have from equation (B.6), that the second order derivative 

, 
506VW9:;

5<W0 4 0, º feasible ��. Hence,  �H�@Ã  is concave w.r.t ��.    
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APPENDIX B. DETAILS OF COMPARISON OF TOTAL SURPLUS 

BETWEEN CGP CONGIGURATION AND IPP CONFIGURATION 

I. Proof that Ä�rst 4 Ä��tt if the equilbirum solution of the CGP model is the arbitrage 

mode binding solution and the equilibrium solution of IPP is the binding solution. 

�����B?B)  \B[BP�/�^B]^�)�Y1P�  ; ����������   $��; 
I���  \B[BP�/�^B]^�)�Y1P� % $�� ! 
� 

�����B©ªB?  \B[B)P/�^1P]^)�Y1P�  ; ������   $��; 
I���  \B[B)P/�^1P]^)�Y1P� % $�� ! 
� 

Condition for total surplus in the arbitrage mode binding solution of the CGP model to have 

higher total surplus than the IPP-Binding 2  

J
I��� ! P) 
I���) ! J
I��� % P) 
I���) 4 L % M����� % N�����) ! L ! M����� ! N�����)
  

We know, 
I��� ! 
I���  P/�^)�P1Y�  ����� ! �����.   

J P/�^)�P1Y� ! P) �
I���) ! 
I���)� 4 M P/�^)�P1Y� % N������) ! �����)�  

J P/�^)�P1Y� ! P) �
I���) ! 
I���)� ! M P/�^)�P1Y� ! N������) ! �����)� 4 0  (2) 

Simplifying using Mathematica, we get 
P0/�^�)\B)[1)P]^1�)YBP�/�^���Y1P�0 4 0    

�2J ! 2M % 2K
� % �2N ! K�$�� 4 0  

�J ! M % K
� 4 �P) ! N�$�� 

Since ����� 3 0, we have J % K
� ! M 3 K$��. Hence the above condition will not be 

satisfied.  
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II Proof that Ä�rst 4 Ä��tt if the equilbirum solution of the CGP model is the non-

arbitrage mode binding solution and the equilibrium solution of IPP is the binding 

solution. 

�����B?B)  \B[BP�/�^B]^�)�Y1P�  ; ����������   $��; 
I���  \B[BP�/�^B]^�)�Y1P� % $�� ! 
� 

�����B©ªB?  \B[B)P/�^1)P]^)�Y1P�  ; ������   $��; 
I���  \B[B)P/�^1)P]^)�Y1P� % $�� ! 
� 

Condition for total surplus in the non-arbitrage mode binding solution of the CGP model to 

have higher total surplus than the IPP-binding  

J
I��� ! P) 
I���) ! J
I��� % P) 
I���) 4 L % M����� % N�����) ! L ! M����� ! N�����)
  

� J�
I��� ! 
I���� ! P) �
I���) ! 
I���)� 4 M������ ! ������ % N������) ! �����)�   

We know, 
I��� ! 
I���  P�/�^B]^�)�P1Y�  ����� ! �����.  Therefore (1) becomes 

J P�/�^B]^�)�P1Y� ! P) �
I���) ! 
I���)� 4 M P�/�^B]^�)�P1Y� % N������) ! �����)�  

J P�/�^B]^�)�P1Y� ! P) �
I���) ! 
I���)� ! M P�/�^B]^�)�P1Y� ! N������) ! �����)� 4 0  (2) 

Simplifying using Mathematica, we get 

P0�]^B/�^��)�[B\�1�)YBP��]^B/�^����Y1P�0 4 0    

2�M ! J� % �2N ! K��
� ! $��� 4 0  

2M ! 2J ! �2N ! K��$�� ! 
�� 4 0  

2M % K�$�� ! 
�� 4 2J % 2N�$�� ! 
��  

�P) ! N� �$�� ! 
�� 4 J ! M  

Since ����� 3 0, we have J ! M 3 K�$�� ! 
��. 
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